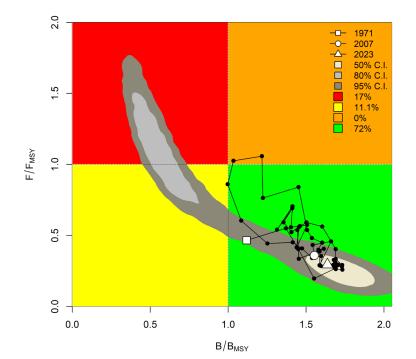
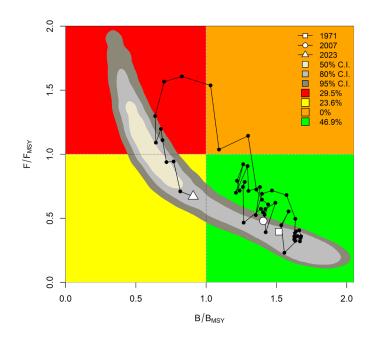
## Day 3 [MENU] PP (Revised)

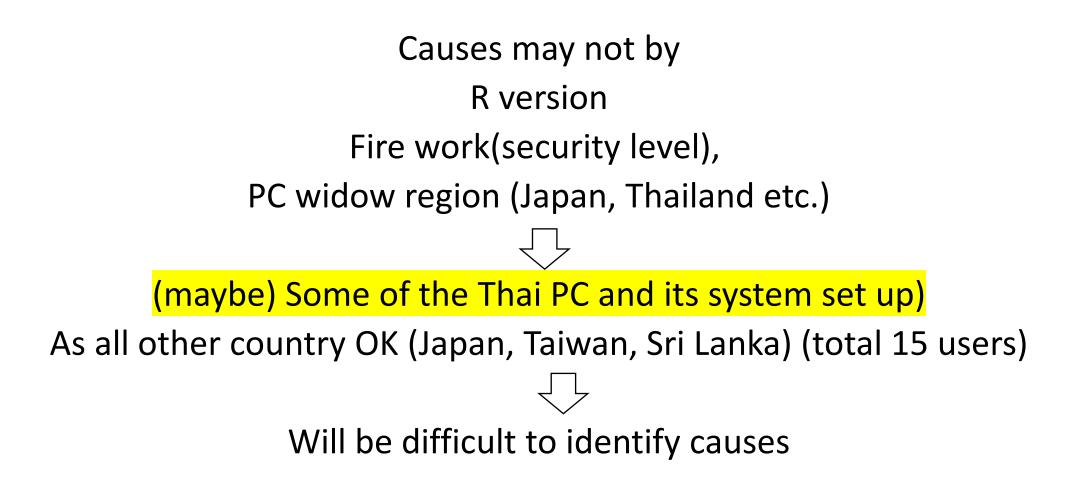

- Remaining (left over) issues (Day 2)
- Summary (Day 2)
- Outline of the whole Report (additional left over point)


\*\*\*\*\*

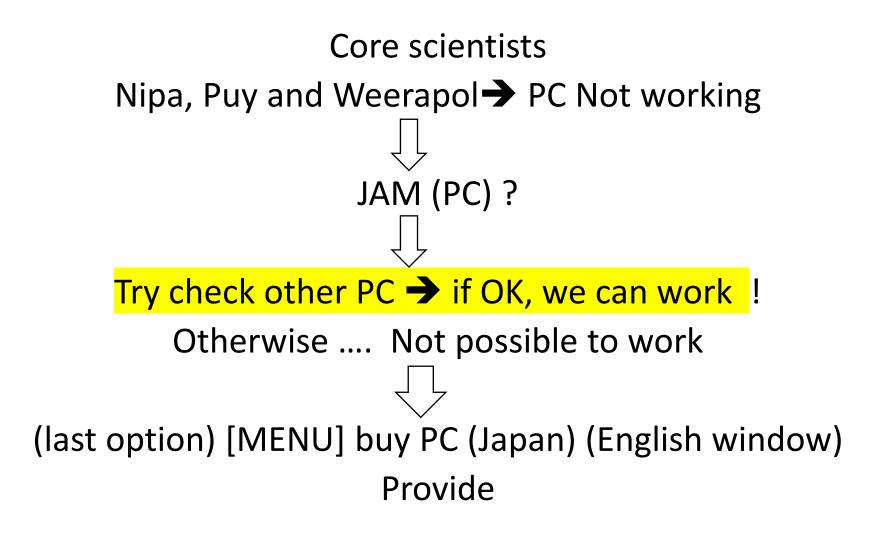
• Short mackerel (Day 3)

Weerapol san question

- We will not accept strange Kobe plots (base case) in Selection form (5) (see the 1<sup>st</sup> example below).
- But in sensitivity Selection form (14) -> no diagnostics for Kobe plot.
- We will add in Selection form (14) → we will reject strange Kobe plot in the final Selection form (14)→(15).

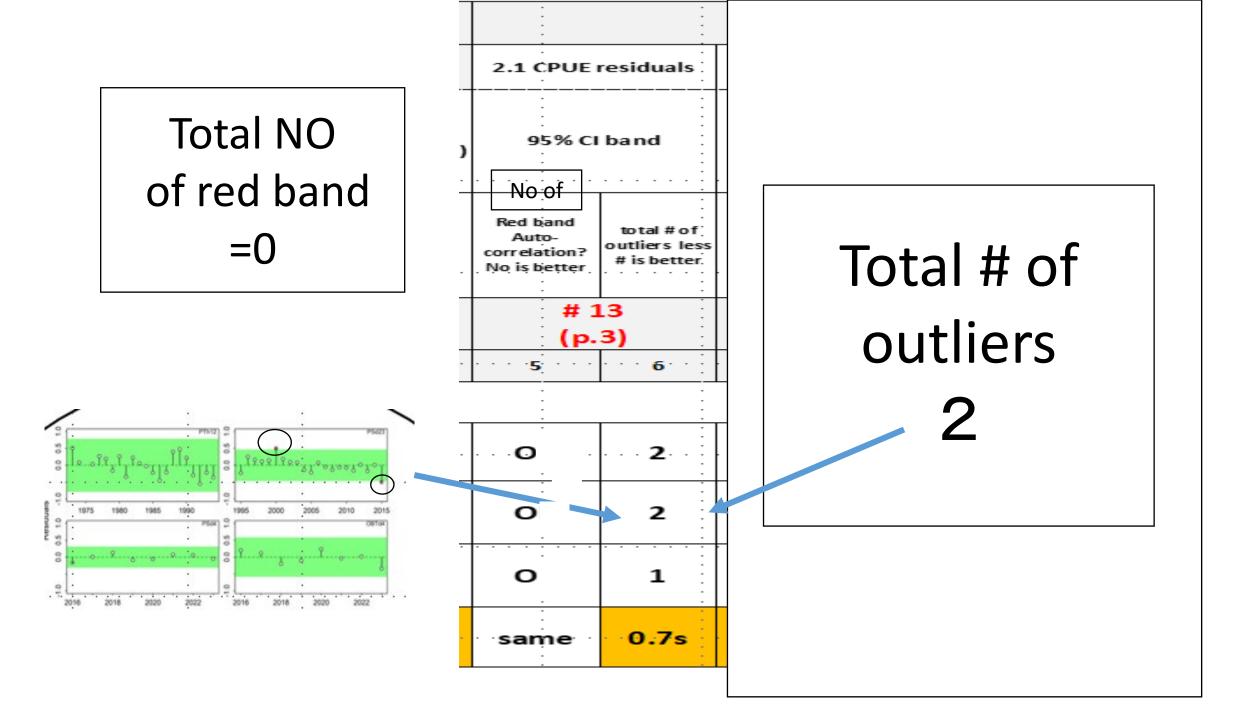


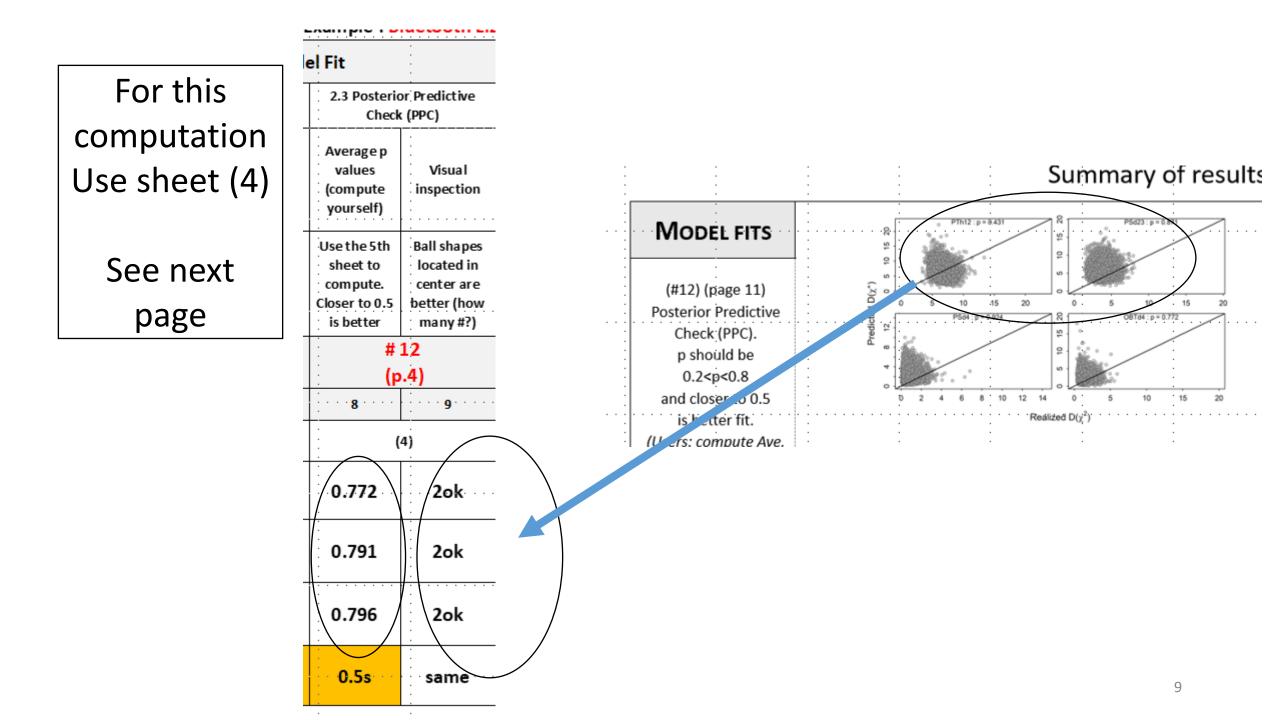


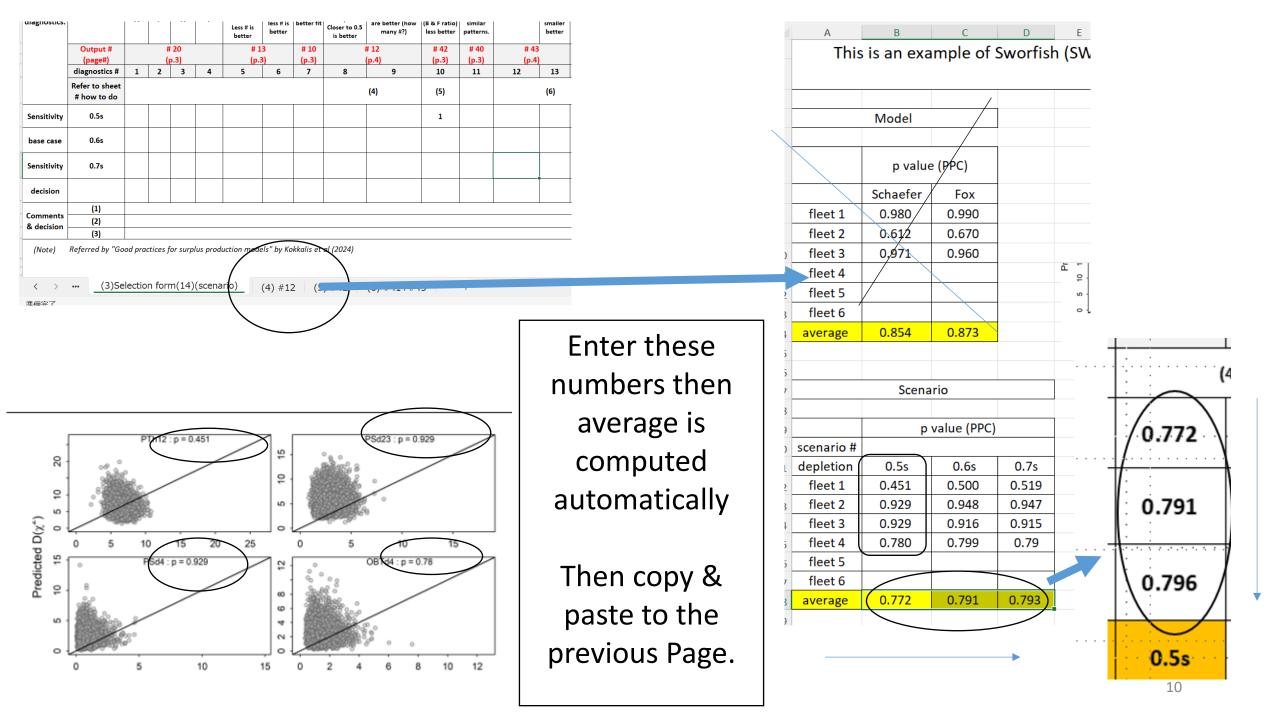


## Kobe plot issue (Prof Wang)

We often see strange (crazy) Kobe plots due to..

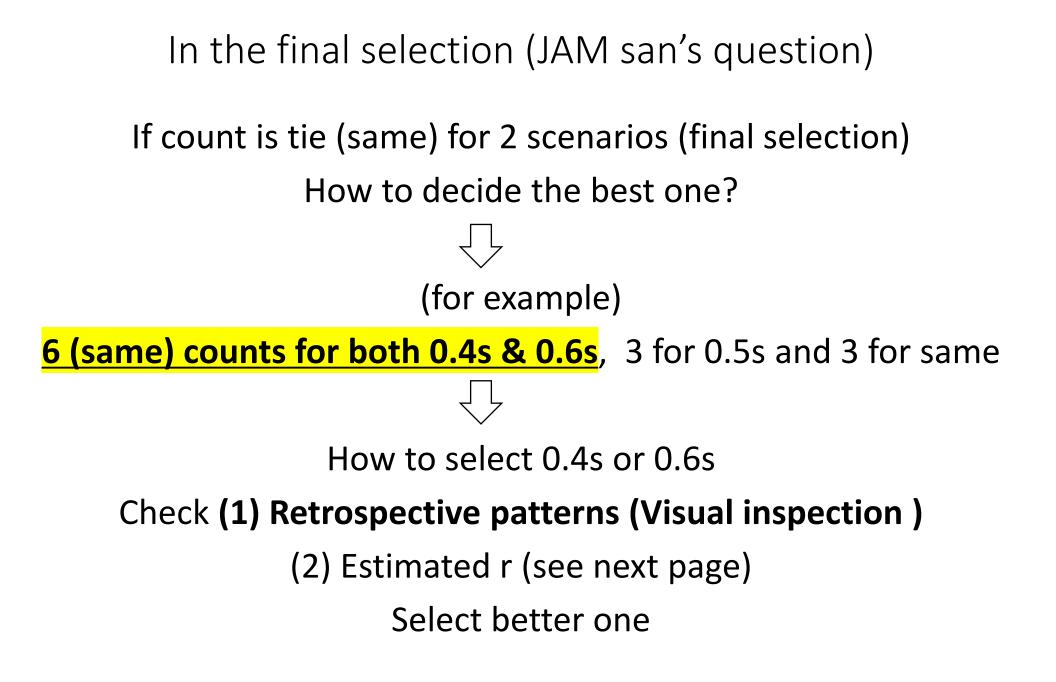
NG retrospective analyses No Convergence & other problems Estimation problems (JABBA) We will reject such runs Installation problem (Professor Wang)




## Question Selection form (14)


Participants can work without hardcopy? If so, they can use results (PC) (no need hard copy) Some notice Selection form (14)







### See sheets (4)



Check estimated r compare to the values in FishBase (FAO) or other sources if median values is 0.50 (FishBase) and 0.45 (0.4s) and 0.7 (0.6s) → 0.4s is close to 0.5 → 0.4s better → 0.4s is the best scenario

| ESTIMATED          | ΙΎ | Parameter   | Meaning                                | Mean    | Lower (95%) Upp | Upper (95%) |
|--------------------|----|-------------|----------------------------------------|---------|-----------------|-------------|
| PARAMETER          |    | K           | Carrying capacity (t)                  | 677.990 | 524,327         | 883,533     |
|                    |    | r           | Pop. growth rate                       | 0.45    | 0.34            | 0.60        |
| VALUES             |    | B0/K        | Depletion (EST)                        | 0.43    | 0.31            | 0.62        |
|                    |    | sigma.proc  | Estimable process VAR                  | 0.05    | 0.03            | 0.09        |
|                    | 0  | m           | Shape parameter                        | 2       | 2               | 2           |
|                    |    | Fmsy        | F at MSY                               | 0.23    | 0.17            | 0.30        |
|                    |    | TBmsy       | TB at MSY (t)                          | 338,995 | 262,163         | 441,766     |
|                    |    | MSY         | MSY (t)                                | 76,619  | 69,781          | 84,034      |
|                    |    | Catch(2023) | Current catch                          | 41,219  |                 |             |
| (#21)<br>(page 16) |    | bmsyk       | yk Limit Ref. Point (TB/TBmsy) 0.50 0. | 0.50    | 0.50            |             |
|                    |    | TB(1971)/ K | Depletion (OBS)(start)                 | 0.44    | 0.30            | 0.63        |
|                    |    | TB(2023)/ K | Depletion (OBS)(last)                  | 0.36    | 0.22            | 0.55        |
|                    |    | TB/TBmsy    | TB ratio                               | 0.71    | 0.44            | 1.11        |
|                    |    | F/Fmsy      | F ratio                                | 0.76    | 0.46            | 1.30        |

13

## We might add r to Selection form (14)

It will be Selection form (16) as we will add Kobe plot + r

Will be more strict diagnostics (screening)  $\rightarrow$  GOOD

Thanks for your suggestion

## Summary(Day 2)

- JABBA reliable, practical & useful → DOF can use
- JABBA Good standardized CPUE  $\rightarrow$  key for successful JABBA
- Assessment results by JABBA (SU) → publication (SEAFDEC)
- Annual species composition can be used to estimate SU catch
- 3q by period important for unbiased JABBA
- JABBA scenario approach → robust & reliable
- New CPUE standardization with 7 Covariates useful ENV, category
- Need to learn whole process (inc. data process)

➔ online work for publication

## Outline of the whole Report

## Start 11:10 AM

### 2<sup>nd</sup> workshop Short mackerel Working Group (SM WG) 152

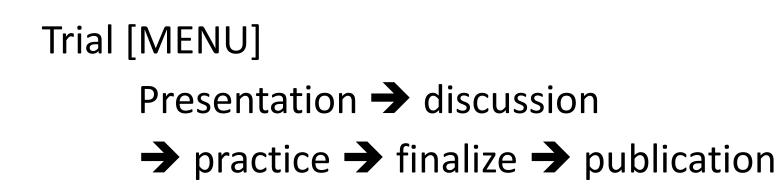


Sock assessment by JABBA (1971~2023) Trail & Discussion

#### SM WG

1. Introduction

#### 2. Data


- 3. Catch & Effort
- 4. Selection of good CPUE for JABBA
  - 4.1 Nominal CPUE
  - 4.2 CPUE standardization
  - 4.3 Selection of good CPUE
- 5. JABBA
  - 5.1 Outline
  - 5.2 Implementation
  - 5.3 Let's try our SM data & comparisons with TB model
- 6. Practice & Homework
  - 6.1 JABBA
  - 6.2 CPUE standardization
  - 6.3 data process
- 7. Discussion, Summary and Future plan

#### SM WG

- 1. Introduction
- 2. Data
- 3. Catch & Effort
- 4. Selection of good CPUE for JABBA
  - 4.1 Nominal CPUE
  - 4.2 CPUE standardization
  - 4.3 Selection of good CPUE
- 5. JABBA
  - 5.1 Outline
  - 5.2 Implementation
  - 5.3 Let's try our SM data & comparisons with TB model
- 6. Practice & Homework
  - 6.1 JABBA
  - 6.2 CPUE standardization
  - 6.3 data process
- 7. Discussion, Summary and Future plan

## 1. Introduction

### SM WG (work plan)



#### SM WG

1. Introduction

#### 2. <mark>Data</mark>

- 3. Catch & Effort
- 4. Selection of good CPUE for JABBA
  - 4.1 Nominal CPUE
  - 4.2 CPUE standardization
  - 4.3 Selection of good CPUE
- 5. JABBA
  - 5.1 Outline
  - 5.2 Implementation
  - 5.3 Let's try our SM data & comparisons with TB model
- 6. Practice & Homework
  - 6.1 JABBA
  - 6.2 CPUE standardization
  - 6.3 data process
- 7. Discussion, Summary and Future plan

## 2. Data

Change of Catchability Important topic before work

Weerapol san presented the situation (Day 2)

q is very useful for JABBA (Bluetooth Lizardfish)

Short mackerel also try in the same way

## Consideration of q catchability in Thai Fisheries for CPUE standardization & JABBA runs (DOF/Weerapol)

| Thai fisheries and corresponding q (1960~2023) |           |                                                                      |                               |  |  |  |  |
|------------------------------------------------|-----------|----------------------------------------------------------------------|-------------------------------|--|--|--|--|
| #                                              | pariad    | Development (changes) of Fisheries                                   | Assignments of q for JABBA    |  |  |  |  |
|                                                | period    | affecting q (catchability)                                           | (Short mackerel & Lizardfish) |  |  |  |  |
| q1                                             | 1960~1974 | <ul> <li>Initial development Thai Fisheries</li> </ul>               | • q12 (1971~1994) (n=24).     |  |  |  |  |
|                                                |           | <ul> <li>Expansion from coastal to offshore</li> </ul>               | Because q1 (1971~1974)        |  |  |  |  |
|                                                |           | fisheries                                                            | is only for 4 years,          |  |  |  |  |
| q2                                             | 1975~1994 | <ul> <li>Expansion of large trawl fisheries to</li> </ul>            | combined q12 will be          |  |  |  |  |
|                                                |           | neighbor countries (sharp catch increase)                            | used.                         |  |  |  |  |
|                                                |           | <ul> <li>Fisheries are limited to EEZ</li> </ul>                     |                               |  |  |  |  |
| q3                                             | 1995~2015 | <ul> <li>Both Thai &amp; Foreign vessels operated in Thai</li> </ul> | • q3 (1995~2015) (n=21)       |  |  |  |  |
|                                                |           | EEZ                                                                  |                               |  |  |  |  |
|                                                |           | <ul> <li>Mix operations in both open sea &amp; EEZ</li> </ul>        |                               |  |  |  |  |
| q4                                             | 2015~2023 | <ul> <li>Establishment of strict management</li> </ul>               | • q4 (2016~2023) (n=8)        |  |  |  |  |
|                                                |           | measures (effort limit, MPA & others)                                |                               |  |  |  |  |
|                                                |           | <ul> <li>Change of data collection &amp; report systems</li> </ul>   |                               |  |  |  |  |

Why we need different q (same gear) (long period)? Simple example

- (1) SU CPUE OBT (1971~1994) (before) in 1 hour → 10Kg
- (2) SU CPUE OBT (2016~2023) (current) in 1 hour → 20KG

Under same biomass

- (2) can catch 2 times higher than (1) in 1 hour
- → Because gear equipment improvements

Thus, in stock assessment,

we need 2 different q (same fleet)

or use 2 different gear OTB1 & OBT2

Different meaning of q → important for another reason

#### For Example,

# If the strong regulation started in 2000 Before & after 2000 $\rightarrow$ q are different (sudden decrease)

Difficult to adjust

## Use 2 different q before & after 2000 (q1 & q2) Like 2 different fisheries

**CPUE standardization & Stock assessment** 

## 2 different of q for different data

Another example if 1995 data collection & process changes

It is useful to use 2q (before & after 1995) JABBA for this time

Same example (Carp WG)

In 1995 data collection system change ←same as Marine Fisheries ? We will apply 2 q → JABBA (future)

#### $\bigcirc$

### Some different approach (example in IOTC)

LL 1950-2023 74 years data  $\rightarrow$  q certainty heterogenous

No clear knowledge of clear-cut year for q (unlike DOF)

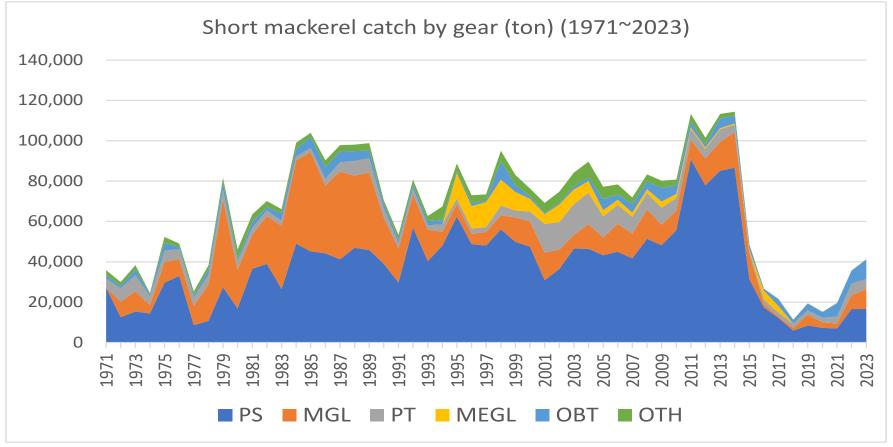
They use Bank interest method (compound system) If q will increase by 1% q (year i)=q(1 in 1950) X (1+0.01)<sup>i</sup> q(2023)=1x(1.01)<sup>74</sup> =2.1 (2.1 times increased)(Bias) CPUE standardization will incorporate this and use standardize q Other factors affecting  $q \rightarrow$  technological evolutions

Bird Rader, echo sounder, sonar, navigation system, gear development, Prediction of fishing grounds (HSI\*), Satellite system, oceanographic & weather conditions \*Habitat Suitability Index (HSI)

> So many evolution Standardize (same) q important (CPUE & SA) Many ways to adjust → cut-off, compound, ad hoc

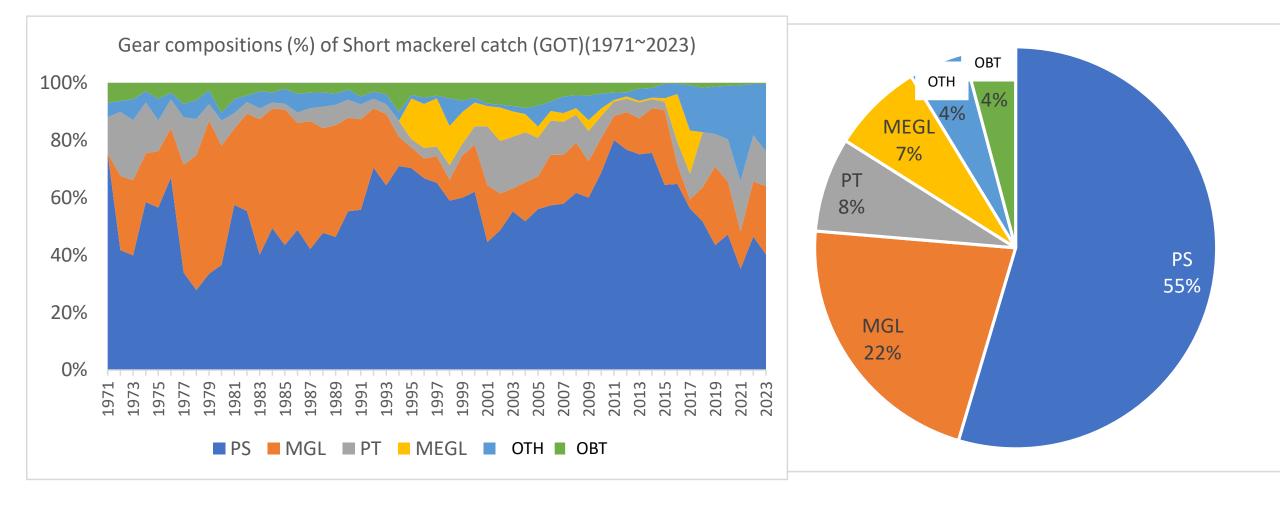
|                                               | Short mackerel (GOT) (area 1~5) (Catch and Effort data) |                                     |                                           |                                                        |                                                        |                                                    |  |  |
|-----------------------------------------------|---------------------------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--|--|
| Data<br>catalog<br>53 years                   |                                                         | Source                              | Statistical division                      |                                                        |                                                        | Research<br>(Port sampling)                        |  |  |
|                                               | q<br>catchability<br>(refer to the text)                | Catch                               | tons                                      |                                                        |                                                        |                                                    |  |  |
|                                               |                                                         | Effort                              | Refer to the text                         |                                                        |                                                        |                                                    |  |  |
|                                               |                                                         | Covariate (CPUE<br>standardization) | Year ar                                   | Year and area Year, MO and                             |                                                        |                                                    |  |  |
|                                               |                                                         | Gear compositions                   | PS (55%) + Mackerel Gillnet(22%)+OTH(23%) |                                                        |                                                        |                                                    |  |  |
| Important<br>Task<br>(IPTP)<br>(RFMO)<br>Why? | q1 (1960-1974)<br>q2<br>n=24                            | 1971<br>1971<br>1994<br>1995        | (1)<br>(q1234)<br>CPUE                    | (2)<br>(q12)<br>CPUE<br>standardization<br>(1971~1994) |                                                        |                                                    |  |  |
|                                               | q3<br>n=21<br>q4<br>n=8                                 | 2015<br>2016<br>2023                | standardization<br>(1971~1994)            |                                                        | (3)<br>(q34)<br>CPUE<br>standardization<br>(1995~2023) | (4) (q4)<br>CPUE<br>standardization<br>(2014~2023) |  |  |

#### SM WG

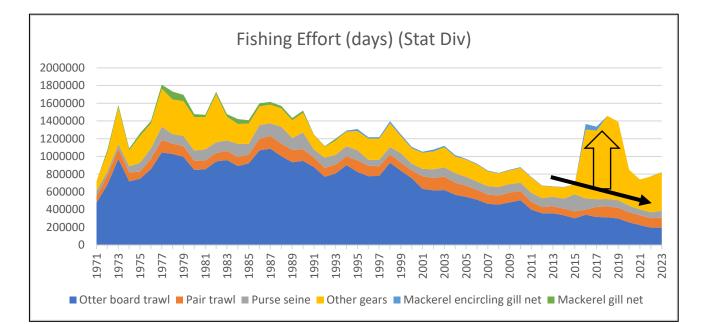

- 1. Introduction
- 2. Data
- 3. Catch & Effort
- 4. Selection of good CPUE for JABBA
  - 4.1 Nominal CPUE
  - 4.2 CPUE standardization
  - 4.3 Selection of good CPUE
- 5. JABBA
  - 5.1 Outline
  - 5.2 Implementation
  - 5.3 Let's try our SM data & comparisons with TB model
- 6. Practice & Homework
  - 6.1 JABBA
  - 6.2 CPUE standardization
  - 6.3 data process
- 7. Discussion, Summary and Future plan

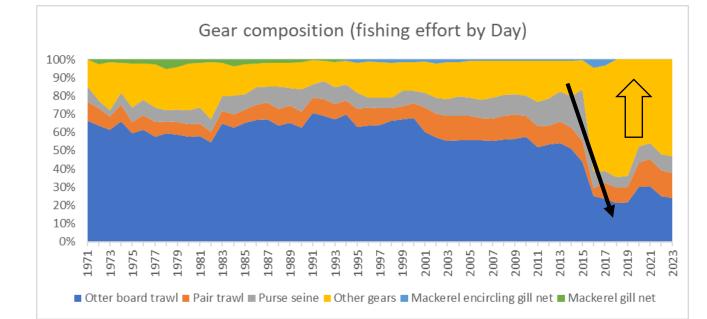
## 3. Catch and Effort

Catch (1971~2023) (Statistical Division)


2 major gears PS(55%)+MGL(22%)

#### + Others(PT+MEGL+OBT+ OTH)(23%)





37

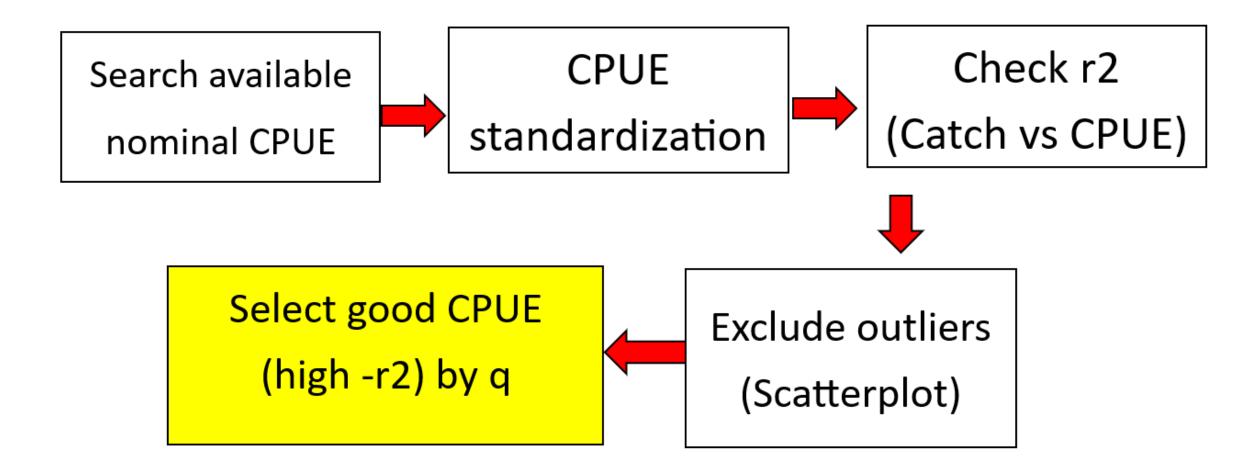
#### Gear composition



Fishing effort (day)






Major gear Drop (regulation) Other (minor) gear Increased

#### SM WG

- 1. Introduction
- 2. Data
- 3. Catch & Effort
- 4. Selection of good CPUE for JABBA
  - 4.1 Nominal CPUE
  - 4.2 CPUE standardization
  - 4.3 Selection of good CPUE
- 5. JABBA
  - 5.1 Outline
  - 5.2 Implementation
  - 5.3 Let's try our SM data & comparisons with TB model
- 6. Practice & Homework
  - 6.1 JABBA
  - 6.2 CPUE standardization
  - 6.3 data process
- 7. Discussion, Summary and Future plan

4. Selection of good CPUE for JABBA
4.1 nominal CPUE
4.2 CPUE standardization
4.3 Selection of good CPUE

### Flowchart to select good CPUE for JABBA



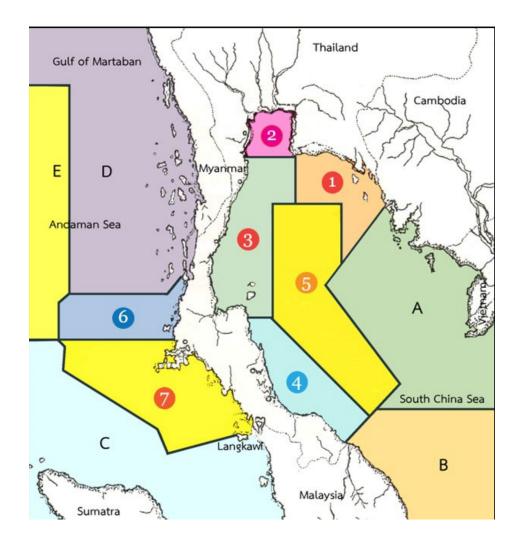
# 4.1 nominal CPUE

# Compute available nominal CPUE for all gears referring to <u>data catalog</u>

#### Data catalog

#### Important

|                                     | Short mac                           | kerel (GOT) (area 1~                              | 5) (Catch and Effort                            | : data)                                                |                                        |
|-------------------------------------|-------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------------------------------|
|                                     | Source                              |                                                   | Statistical division                            | on                                                     | Research<br>(Port sampling)            |
| q                                   | Catch                               |                                                   | t                                               | ons                                                    |                                        |
| catchability<br>(refer to the text) | Effort                              |                                                   | Refer to                                        | o the text                                             |                                        |
|                                     | Covariate (CPUE<br>standardization) | Year an                                           |                                                 | Year, MOand                                            | l area                                 |
|                                     | Gear compositions                   | PS                                                | 5 (55%) + Mackerel                              | Gillnet(22%)+OTH(23%)                                  | I                                      |
| q1 (1960-1974)                      | 1971                                |                                                   | $\frown$                                        |                                                        |                                        |
| q2                                  | 1994                                | (1)<br>(q1234)                                    | (q12)<br>CPUE<br>standardization<br>(1971~1994) |                                                        |                                        |
| q3                                  | 1995<br>2015                        | (q1234)<br>CPUE<br>standardization<br>(1971~1994) |                                                 | (3)<br>(q34)<br>CPUE<br>standardization<br>(1995~2023) | (4),q4)                                |
| q4                                  | 2016<br>2023                        |                                                   |                                                 |                                                        | CPUE<br>standardization<br>(2014~2023) |


#### Results 28 nominal CPUE

|            |                   | Statis           | Research Port sampling (set by set) |                     |                               |                   |         |                  |         |  |
|------------|-------------------|------------------|-------------------------------------|---------------------|-------------------------------|-------------------|---------|------------------|---------|--|
|            | data set #        |                  | (1)                                 | (2)                 | (3)                           |                   | (4)     |                  |         |  |
|            | q                 |                  | q1234                               | q12                 | q3                            | q                 | (4) q4  |                  |         |  |
| Ρ          | Period (years)(*) |                  |                                     | 1971~1994<br>(n=24) | 1995~2023<br>(n=19)           | Period<br>(years) |         |                  |         |  |
| Covariates |                   |                  | Year ar                             | nd Area             | year, Mo, area<br>and Mo*area | Covariates        | year, N | /lo, area and I  | Mo*area |  |
| No         | gear              | unit<br>(Kg per) |                                     |                     |                               | No                | gear    | unit<br>(Kg per) |         |  |
| 1          | MEGL              | day              |                                     |                     |                               | 15                | APS     | day              |         |  |
| 2          | WILCE             | hr               |                                     |                     |                               | 16                | AIJ     | hr               |         |  |
| 3          | MGL               | day              |                                     |                     |                               | 17                | ВТ      | day              |         |  |
| 4          |                   | hr               |                                     |                     |                               | 18                |         | hr               |         |  |
| 5          | ОВТ               | day              |                                     |                     |                               | 19                | FAD     | day              |         |  |
| 6          | OBI               | haul             |                                     |                     |                               | 20                | FAD     | haul             |         |  |
| 7          | PT                | day              |                                     |                     |                               | 21                | LPS     | day              |         |  |
| 8          | P1                | haul             |                                     |                     |                               | 22                | LFJ     | haul             |         |  |
| 9          | PS                | day              |                                     |                     |                               | 23                | OBT     | day              |         |  |
| 10         | r3                | hr               |                                     |                     |                               | 24                |         | hr               |         |  |
| 11         | ОТН               | day              |                                     |                     |                               | 25                | РТ      | day              |         |  |
| 12         |                   | hr               |                                     |                     |                               | 26                | F I     | hr               |         |  |
| 13         |                   | day              |                                     |                     |                               | 27                |         | day              |         |  |
| 14         | ALL               | hr               |                                     |                     |                               | 28                | TPS     | haul             |         |  |

(\*) n= is the maximum numbers. However, sometimes less number as outliers and/or errors are removed.

46

## 5 area (GOT)



# Preparation of nominal CPUE data set

(1) Port sampling (set by set data)
 (2) Statistical Division (by area data)
 (by Mo & area data)
 (1995~2023)

48

 $\square$ 

Data process (outline) We need to practice together (take time & complicated)

Statistical Division(1971~2023)

monthly stat\_catch (GOT) 1971-2023\_rev1

Year

Month

```
Area(1~5) (GOT)
```

Catch (Small Mackerel) (tons) by gear

Effort (days or hour) by gear

| Gear | Mackerel<br>encircling<br>gill net | Mackerel<br>gill net | Otter<br>board<br>trawl | Pair trawl | Purse<br>seine | Other<br>gears | Grand<br>Total |  |
|------|------------------------------------|----------------------|-------------------------|------------|----------------|----------------|----------------|--|
|------|------------------------------------|----------------------|-------------------------|------------|----------------|----------------|----------------|--|

|   | A            | В          | С         | D                                    | Е                    | F                         | G          | Н              |                | J              | K | L       | Μ           | Ν                 | 0            |      |
|---|--------------|------------|-----------|--------------------------------------|----------------------|---------------------------|------------|----------------|----------------|----------------|---|---------|-------------|-------------------|--------------|------|
| C | catch (tons) | by gear in | GOT       |                                      |                      |                           |            |                |                |                |   |         |             |                   |              |      |
|   | year A.D.    | Month      | stat area | Mackerel<br>encircling<br>gill net 💌 | Mackerel<br>gill net | Otter<br>board<br>trawl 💌 | Pair trawl | Purse<br>seine | Other<br>gears | Grand<br>Total |   | Remark: |             | nercial and a     | artisanal    |      |
|   | 1971         | NA         | 1         |                                      |                      | 99                        | 757        | 4880           | 14             | 5750           |   | Catchin | ciudes comi |                   |              |      |
|   | 1971         | NA         | 2         |                                      |                      | 886                       | 688        | 8190           | 1658           | 11422          |   | NA1 me  | anse no mo  | nthly data        |              |      |
|   | 1971         | NA         | 3         |                                      |                      | 1145                      | 2124       | 14048          | 114            | 17431          |   |         |             | ,<br>ted catch of | artisanal ca | atch |
|   | 1971         | NA         | 4         |                                      |                      | 301                       | 941        |                | 0              | 1242           |   |         |             |                   |              |      |
|   | 1971         | NA         | 5         |                                      |                      | 25                        |            |                | 0              | 25             |   |         |             |                   |              |      |
|   | 1972         | NA         | 1         |                                      | 3014                 | 195                       | 181        | 4260           | 36             | 7686           |   |         |             |                   |              |      |
|   | 1972         | NA         | 2         |                                      | 2823                 | 770                       | 3066       | 3562           | 956            | 11177          |   |         |             |                   |              |      |
|   | 1972         | NA         | 3         |                                      | 1886                 | 462                       | 2192       | 3311           | 149            | 8000           |   |         |             |                   |              |      |
|   | 1972         | NA         | 4         |                                      |                      | 434                       | 304        | 1381           | 0              | 2119           |   |         |             |                   |              |      |
|   | 1972         | NA         | 5         |                                      |                      | 3                         | 945        |                | 0              | 948            |   |         |             |                   |              |      |
|   | 1973         | NA         | 1         |                                      | 7266                 | 302                       | 874        | 4305           | 66             | 12813          |   | C-      | -+h         | 1+00              | $\sim$       |      |
|   | 1973         | NA         | 2         |                                      | 638                  | 658                       | 3516       | 7315           | 2681           | 14808          |   |         | alch        | (ton              | 5)           |      |
|   | 1973         | NA         | 3         |                                      | 2166                 | 212                       | 3281       | 3141           | 37             | 8837           |   |         |             |                   |              |      |
|   | 1973         | NA         | 4         |                                      |                      | 985                       | 354        | 538            | 0              | 1877           |   |         |             |                   |              |      |
|   | 1973         | NA         | 5         |                                      |                      | 8                         |            |                | 0              | 8              |   |         |             |                   |              |      |
|   | 1974         | NA         | 1         |                                      | 1900                 | 99                        | 594        | 1778           | 129            | 4500           |   |         |             |                   |              |      |
|   | 1974         | NA         | 2         |                                      | 651                  | 88                        | 1211       | 6058           | 755            | 8763           |   |         |             |                   |              |      |
|   | 1974         | NA         | 3         |                                      | 1605                 | 114                       | 1824       | 4754           | 79             | 8376           |   |         |             |                   |              |      |
|   | 1974         | NA         | 4         |                                      |                      | 394                       | 482        | 1751           | 4              | 2631           |   |         |             |                   |              |      |
|   | 1974         | NA         | 5         |                                      |                      |                           | 211        |                | 0              | 211            |   |         |             |                   |              |      |
|   | 1975         | NA         | 1         |                                      | 2632                 | 276                       | 3414       | 4170           | 505            | 10997          |   |         |             |                   |              |      |
|   | 1975         | NA         | 2         |                                      | 1550                 | 530                       | 1173       | 14196          | 3355           | 20804          |   |         |             |                   |              |      |
|   | 1975         | NA         | 3         |                                      | 6134                 | 697                       | 630        | 10041          | 86             | 17588          |   |         |             |                   |              |      |
|   | 1975         | NA         | 4         |                                      |                      | 1229                      | 379        | 1167           | 0              | 2775           |   |         |             |                   |              |      |
|   | 1975         | NA         | 5         |                                      |                      | 131                       |            |                | 0              | 131            |   |         |             |                   |              |      |
|   | 1976         | NA         | 1         |                                      | 1969                 | 65                        | 2472       | 4203           | 128            | 8837           |   |         |             |                   |              |      |
|   | 1976         | NA         | 2         |                                      | 1430                 | 182                       | 695        | 21844          | 953            | 25104          |   |         |             |                   |              |      |

|   | A            | В         | С     | D         | E                                  | F                    | G                       | Н          |                | J              | K                | L | Μ                                  | N        | 0                 |
|---|--------------|-----------|-------|-----------|------------------------------------|----------------------|-------------------------|------------|----------------|----------------|------------------|---|------------------------------------|----------|-------------------|
|   | Effort (day) |           |       |           |                                    |                      |                         |            |                |                |                  | 0 | 0                                  |          | 0                 |
|   | year B.E.    | year A.D. | Month | stat area | Mackerel<br>encircling<br>gill net | Mackerel<br>gill net | Otter<br>board<br>trawl | Pair trawl | Purse<br>seine | Other<br>gears | Grand Tota       |   | k:<br>ommercial ef<br>eans no mont |          | <sup>ible</sup> 0 |
|   | 2514         | 1971      | NA    | 1         |                                    |                      | 131629                  | 13782      | 22724          | 7829           | 175964           | 0 |                                    | ily uata |                   |
|   | 2514         | 1971      | NA    | 2         |                                    |                      | 150252                  | 28438      | 17995          | 87432          | 284117           |   |                                    |          |                   |
|   | 2514         | 1971      | NA    | 3         |                                    |                      | 105071                  | 21077      | 17795          | 12940          | 156883           |   |                                    |          |                   |
|   | 2514         | 1971      | NA    | 4         |                                    |                      | 88570                   | 11318      |                | 0              | 99888            |   |                                    |          |                   |
|   | 2514         | 1971      | NA    | 5         |                                    |                      | 2824                    |            |                | 0              | 2824             |   |                                    |          |                   |
|   | 2515         | 1972      | NA    | 1         |                                    | 6484                 | 227832                  | 15313      | 16914          | 10623          | 277166           |   |                                    |          |                   |
|   | 2515         | 1972      | NA    | 2         |                                    | 11792                | 185742                  | 59586      | 12351          | 128409         | 397880           |   |                                    |          |                   |
| ) | 2515         | 1972      | NA    | 3         |                                    | 10377                | 110111                  | 18049      | 9545           | 18259          | 166341           |   |                                    |          |                   |
|   | 2515         | 1972      | NA    | 4         |                                    |                      | 157410                  | 4817       | 4118           | 57162          | 223507           | ( |                                    |          |                   |
| ) | 2515         | 1972      | NA    | 5         |                                    |                      | 623                     | 6387       |                | 0              | 7010             |   |                                    | / 1      |                   |
| ) | 2516         | 1973      | NA    | 1         |                                    | 7361                 | 257635                  | 41579      | 22617          | 36862          | 366054           | - | ffort                              | - (da    | iV)               |
| ŀ | 2516         | 1973      | NA    | 2         |                                    | 7369                 | 266927                  | 39581      | 16256          | 210267         | 540400           |   |                                    |          | י א ו             |
| ) | 2516         | 1973      | NA    | 3         |                                    | 8033                 | 162758                  | 27924      | 7566           | 51429          | 257710           |   |                                    |          |                   |
| 5 | 2516         | 1973      | NA    | 4         |                                    |                      | 282745                  | 5400       | 4549           | 120839         | 413533           |   |                                    |          |                   |
| ' | 2516         | 1973      | NA    | 5         |                                    |                      | 1113                    |            | 229            | 0              | 1342             |   |                                    |          |                   |
| 3 | 2517         | 1974      | NA    | 1         |                                    | 4011                 | 125939                  | 29040      | 18438          | 21241          | 198669           |   |                                    |          |                   |
| ) | 2517         | 1974      | NA    | 2         |                                    | 6298                 | 224319                  | 42263      | 25639          | 100466         | 398985           |   |                                    |          |                   |
| ) | 2517         | 1974      | NA    | 3         |                                    | 8465                 | 163474                  | 20953      | 21502          | 20047          | 234441           |   |                                    |          |                   |
| L | 2517         | 1974      | NA    | 4         |                                    |                      | 204350                  | 6061       | 4661           | 39753          | 254825           |   |                                    |          |                   |
| 2 | 2517         | 1974      | NA    | 5         |                                    |                      |                         | 2868       |                | 0              | 2868             |   |                                    |          |                   |
| 3 | 2518         | 1975      | NA    | 1         |                                    | 3754                 | 140614                  | 19990      | 28063          | 27892          | 220313           |   |                                    |          |                   |
| 1 | 2518         | 1975      | NA    | 2         |                                    | 8368                 | 266816                  | 49755      | 35867          | 178075         | 538881           |   |                                    |          |                   |
| 5 | 2518         | 1975      | NA    | 3         |                                    | 17165                | 159406                  | 4375       | 31287          | 39277          | 251510           |   |                                    |          |                   |
| 5 | 2518         | 1975      | NA    | 4         |                                    |                      | 180482                  | 5134       | 4442           | 59045          | 249103           |   |                                    |          |                   |
| 7 | 2518         | 1975      | NA    | 5         |                                    |                      | 2178                    |            |                | 0              | 2178             |   |                                    |          |                   |
| 3 | 2519         | 1976      | NA    | 1         |                                    | 3060                 | 185290                  | 36885      | 34556          | 54011          | 313802           |   |                                    |          |                   |
| ) | 2519         | 1976      | NA    | 2         |                                    | 7318                 | 252632                  | 44718      | 31081          | 118957         | 454706<br>effort |   |                                    |          |                   |

|          | А           | В         | С        | D          | E                                    | F                    | G                         | Н          | I              | J              | K              | L         | Μ           | Ν                   | 0             | Р                           |
|----------|-------------|-----------|----------|------------|--------------------------------------|----------------------|---------------------------|------------|----------------|----------------|----------------|-----------|-------------|---------------------|---------------|-----------------------------|
| 1 [ff    | fort (hour) | )         |          |            |                                      |                      |                           |            |                |                |                |           |             |                     |               |                             |
| 2        | year B.E.   | year A.D. | Month    | stat area  | Mackerel<br>encircling<br>gill net 🔻 | Mackerel<br>gill net | Otter<br>board<br>trawl ▼ | Pair trawl | Purse<br>seine | Other<br>gears | Grand<br>Total |           |             | Remark:<br>Only com | mercial effor | rt is availabl              |
| 3        | 2514        | 1971      | NA       | 1          |                                      |                      | 1550954                   | 204842     |                | 0              | 1755796        |           |             | NA means            | s no monthly  | <mark>/ data 💦 🗌 🗌 🖉</mark> |
| 4        | 2514        | 1971      | NA       | 2          |                                      |                      | 1850458                   | 326231     |                | 0              | 2176689        |           |             |                     |               |                             |
| 5        | 2514        | 1971      | NA       | 3          |                                      |                      | 1383168                   | 329380     |                | 0              | 1712548        |           |             |                     |               |                             |
| 6        | 2514        | 1971      | NA       | 4          |                                      |                      | 1357434                   | 185892     |                | 0              | 1543326        |           |             |                     |               |                             |
| 7        | 2514        | 1971      | NA       | 5          |                                      |                      | 26547                     |            |                | 0              | 26547          |           |             |                     |               |                             |
| 8        | 2515        | 1972      | NA       | 1          |                                      |                      | 2605110                   | 209066     |                | 0              | 2814176        |           |             |                     |               |                             |
| 9        | 2515        | 1972      | NA       | 2          |                                      |                      | 2780287                   | 691774     |                | 360454         | 3832515        |           |             |                     |               |                             |
| .0       | 2515        | 1972      | NA       | 3          |                                      |                      | 2003858                   | 211971     |                | 84916          | 2300745        |           |             |                     |               |                             |
| .1       | 2515        | 1972      | NA       | 4          |                                      |                      | 2532347                   | 58645      |                | 534719         | 3125711        | $\bigcap$ |             |                     |               |                             |
| .2       | 2515        | 1972      | NA       | 5          |                                      |                      | 8791                      | 107516     |                | 0              | 116307         |           |             |                     |               |                             |
| .3       | 2516        | 1973      | NA       | 1          |                                      |                      | 3255695                   | 443474     |                | 166879         | 3866048        |           |             | <u>ч (р</u>         |               |                             |
| .4       | 2516        | 1973      | NA       | 2          |                                      |                      | 3171328                   | 456669     |                | 1231978        | 4859975        |           | Effor       | T (NC               | JUL           |                             |
| .5<br>.6 | 2516        | 1973      | NA       | 3          |                                      |                      | 3093520                   | 307183     |                | 384074         | 3784777        |           |             |                     |               |                             |
| .6       | 2516        | 1973      | NA       | 4          |                                      |                      | 4131840                   | 60727      |                | 1121183        | 5313750        |           |             |                     |               |                             |
| .7       | 2516        | 1973      | NA       | 5          |                                      |                      | 12145                     |            |                | 0              | 12145          |           |             |                     |               |                             |
| .8       | 2517        | 1974      | NA       | 1          |                                      |                      | 1490468                   | 318208     | 125854         | 78603          | 2013133        |           |             |                     |               |                             |
| .9       | 2517        | 1974      | NA       | 2          |                                      |                      | 2778932                   | 527799     | 153666         | 584700         | 4045097        |           |             |                     |               |                             |
| 20       | 2517        | 1974      | NA       | 3          |                                      |                      | 2743135                   | 233779     | 110115         | 308949         | 3395978        |           |             |                     |               |                             |
| 21       | 2517        | 1974      | NA       | 4          |                                      |                      | 3131297                   | 61180      | 49237          | 767687         | 4009401        |           |             |                     |               |                             |
| 22       | 2517        | 1974      | NA       | 5          |                                      |                      |                           | 33010      |                | 0              | 33010          |           |             |                     |               |                             |
| 23       | 2518        | 1975      | NA       | 1          |                                      |                      | 1593260                   | 327648     |                | 90487          | 2011395        |           |             |                     |               |                             |
| 24       | 2518        | 1975      | NA       | 2          |                                      |                      | 3868901                   | 546544     |                | 530671         | 4946116        |           |             |                     |               |                             |
| 25       | 2518        | 1975      | NA       | 3          |                                      |                      | 2375958                   | 49733      |                | 229844         | 2655535        |           |             |                     |               |                             |
| 26       | 2518        | 1975      | NA       | 4          |                                      |                      | 2792048                   | 47306      |                | 451501         | 3290855        |           |             |                     |               |                             |
| 27       | 2518        | 1975      | NA       | 5          |                                      |                      | 31716                     |            |                | 0              | 31716          |           |             |                     |               |                             |
| 28       | 2519        | 1976      | NA       | 1          |                                      |                      | 1892903                   | 403638     |                | 64413          | 2360954        |           |             |                     |               |                             |
| 29       | 2519        | 1976      | NA       | 2          |                                      |                      | 2887664                   | 516310     |                | 508265         | 3912239        |           |             |                     |               |                             |
| <        | >           | short     | mackerel | catch (ton | ) lizar                              | dfish catch          | (ton)                     | threadfin  | bream cat      | tch (ton)      | effort (d      | day)      | effort (hr) | ref                 | +             | :                           |

We will make nominal CPUE data set

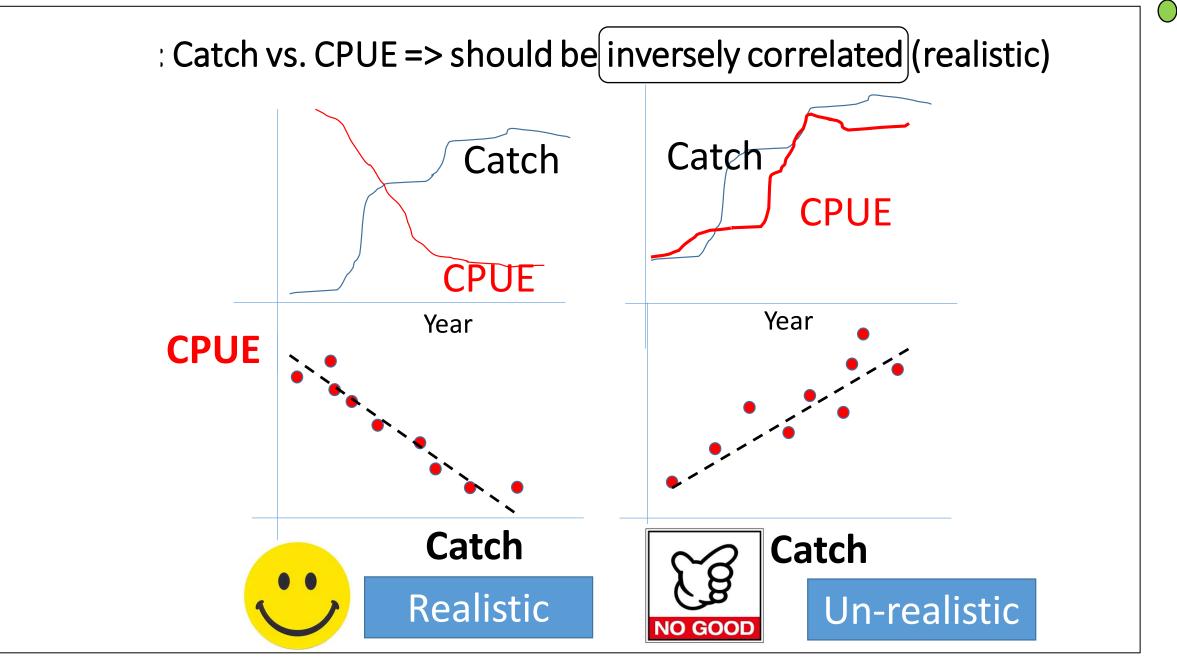
## We need a lot of process, need $\frac{QC}{C}$ to check errors $\rightarrow$ 1-2 days

### We need Merge(Catch & Effort) Simple R codes for merge are developed VLOOKUP (Excel)

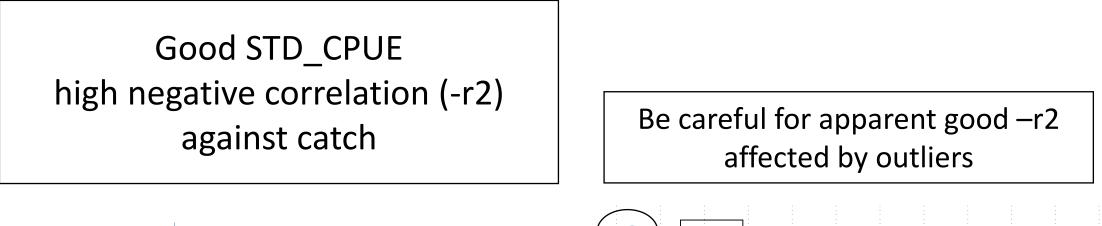
#### Results of final nominal CPUE for CPUE standardization STAT data 4 Covariates

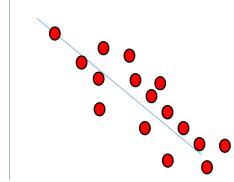
|   | А    | В  | С    |
|---|------|----|------|
| 1 | year | mo | area |
| 2 | 2003 | 1  | 4    |
| 3 | 2003 | 1  | 4    |
| 4 | 2003 | 1  | 5    |
| 5 | 2003 | 1  | 5    |
| 6 | 2003 | 1  | 5    |
| 7 | 2003 | 1  | 5    |
| 8 | 2003 | 1  | 5    |

| F     |  |
|-------|--|
| CPUE  |  |
| 1.2   |  |
| 0.552 |  |
| 0.07  |  |
| 0.108 |  |
| 3.14  |  |
| 0.3   |  |
| 0.658 |  |
|       |  |

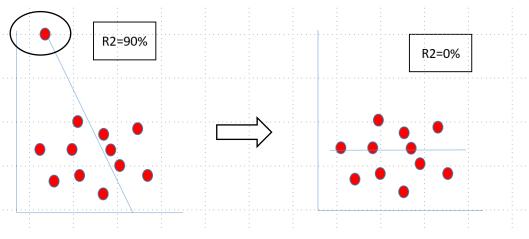

# 4.2 CPUE standardization

Objectives


#### To search good abundance indices for JABBA


# Bad STD\_CPUE $\rightarrow$ NG JABBA results. JABBA results depend on quality of STD\_CPUE

Good standardized CPUE is critical for JABBA. If good STD\_CPUE→ good JABBA results (short time).




How to search good standardized (STD) CPUE? scatterplot & -r2





CPUE



Catch

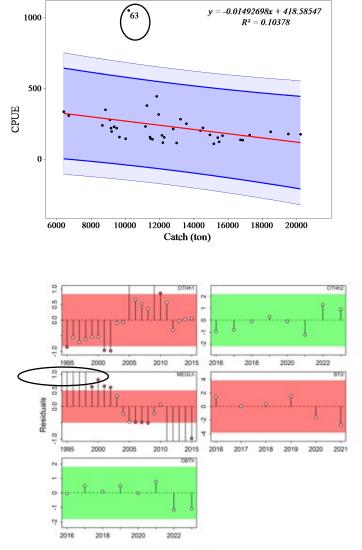
Catch

#### Detection bad CPUE (outliers) & good CPUE (2 ways)

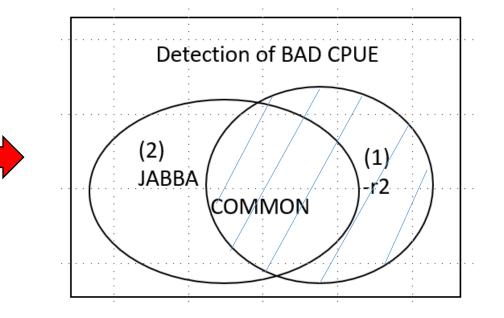
(1) Scatterplot

Catch vs CPUE based outliers

Remove outliers


Select high −r2 → Good CPUE

(2) JABBA


Model based outliers

Delete red points -> green

Select Good CPUE (green)



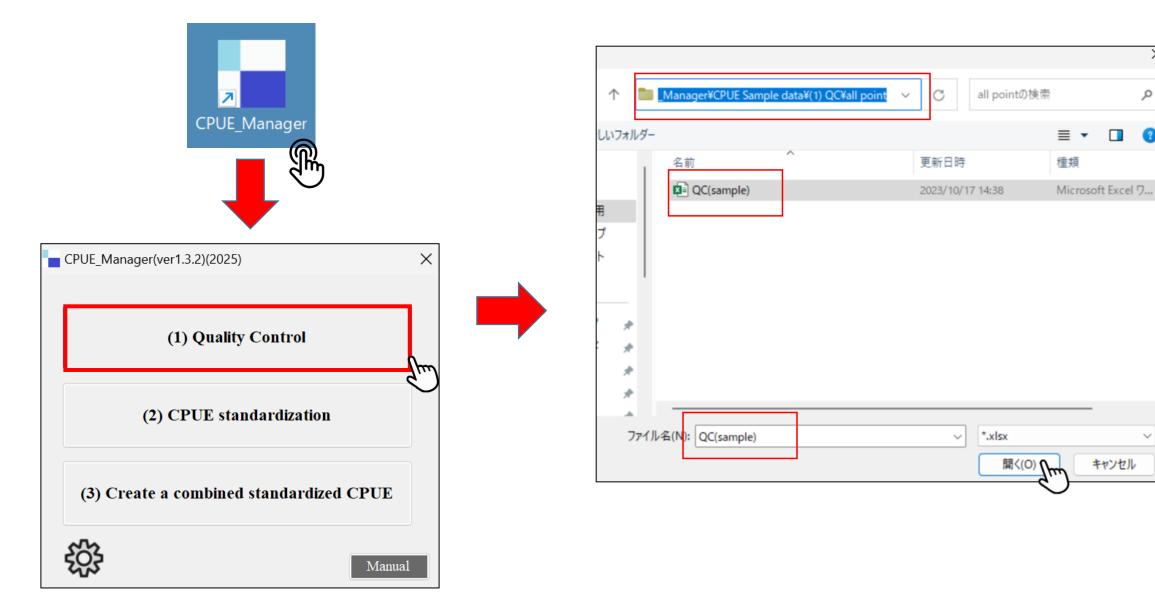
# Relation of outliers between (1) & (2)



# Removed outliers in (1) remove Good results (short time)

# How to define large outliers?

(1) Visual inspection(expert judgement)


How Visual Inspection helps in Quality Control

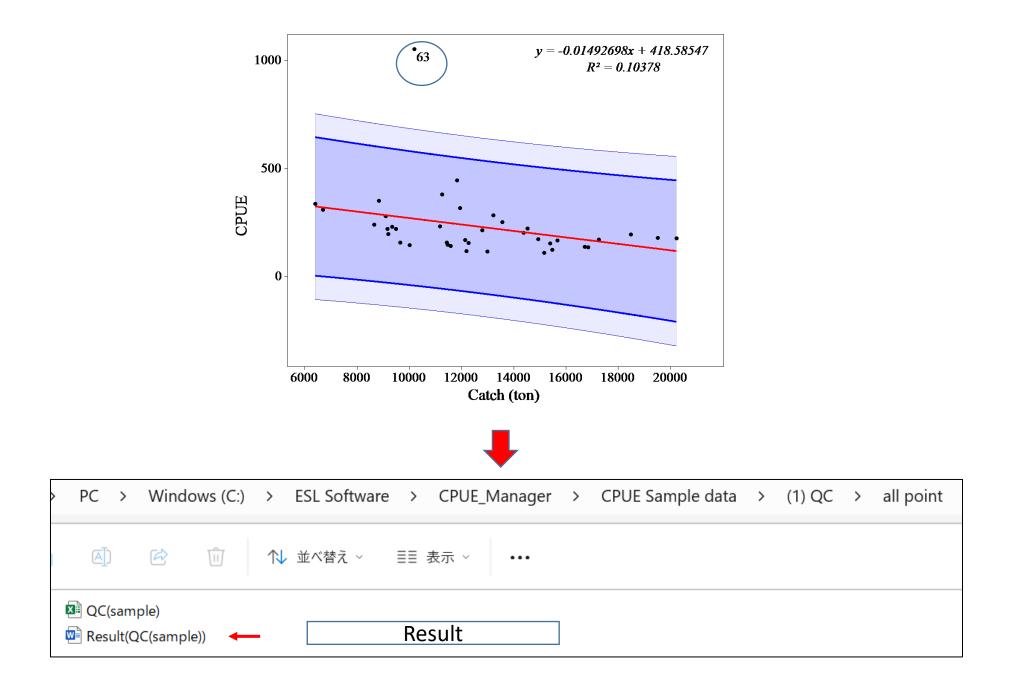


(2) Numerical criteria(> ±4\*SE)

# CPUE\_Manager → QC make scatterplot detect outliers

| CPUE_Manager(ver1.3.6)(2025)            | $\times$ |
|-----------------------------------------|----------|
|                                         |          |
| (1) Quality Control                     |          |
| (2) CPUE standardization                |          |
| (3) Create a combined standardized CPUE |          |
| Manual                                  |          |




63

X

م

3

 $\sim$ 



| Make a new data<br>file<br>Without | ager¥CPUE Sample data¥(1) QC¥no 1963 point<br>ルダー<br>名前<br>配<br>QC(sample) no 1963 |
|------------------------------------|------------------------------------------------------------------------------------|
| 1963 data                          | *                                                                                  |
|                                    | 20                                                                                 |
|                                    | ファイル名(N): QC(sample) no 1963                                                       |
|                                    |                                                                                    |
|                                    |                                                                                    |

| > |           | Windows                    | (C:) | >    | ESL Software | ÷ > | CPUE_Man | ager > | CPUE Sample data | > | (1) QC | > | no 1963 point |
|---|-----------|----------------------------|------|------|--------------|-----|----------|--------|------------------|---|--------|---|---------------|
| 2 | <u>A]</u> | )                          | ÎIJ  |      | ↑↓ 並べ替え      | ~   | 言言 表示 ∽  |        |                  |   |        |   |               |
|   |           | (sample) no<br>ult(QC(samp |      | 963) | 7            |     |          |        |                  |   |        |   |               |

C

更新日時

2023/10/17 14:39

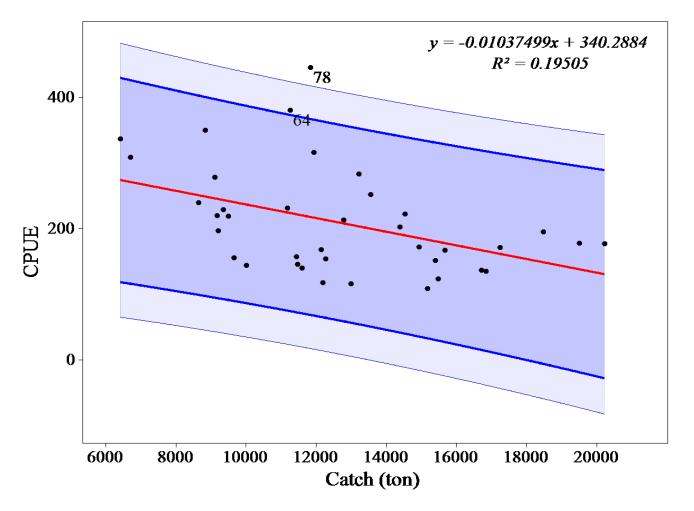
\*.xlsx

開<(O)

 $\sim$ 

 $\sim$ 

no 1963 pointの検索


≣ - □

Microsoft Excel 7

キャンセル

種類

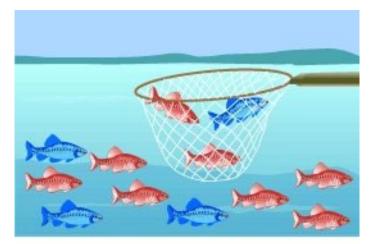




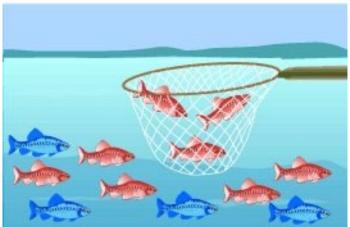
RESULTS Negative CORR relation <u>is improved</u>, i.e., <mark>r2 increased (10% to 20%)</mark>

No need to remove the 1978 point as close to the 99% Confidence band.




Major gears (large catch) important → But not always good CPUE minor gears (not important) → sometimes good CPUE

In general, what is the good CPUE?


Good CPUE → simple random sampling (high -r2 with catch) → Good reflection of abundance

# What is simple random sampling? Why so important?

https://www.youtube.com/watch?app=desktop&v=Zd2UpbvMP\_8&ab\_channel=ANAPH



 Simple random sampling
 ➔ Proportional red & blue Reflect population

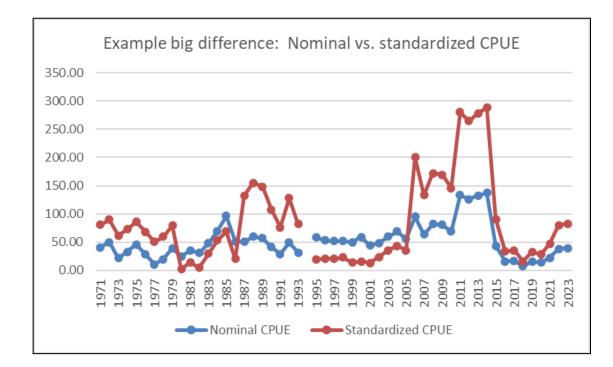


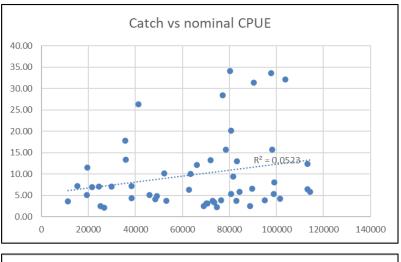
Target only red fish Biased sampling →NO reflection of population

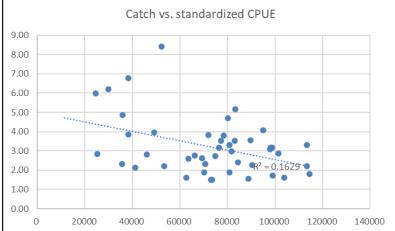
## Why major gear not good for CPUE ?

#### Target → not SRS (simple random sampling) (bias) → NG

# Minor gears may do more SRS Because Not targeting thus more SRS

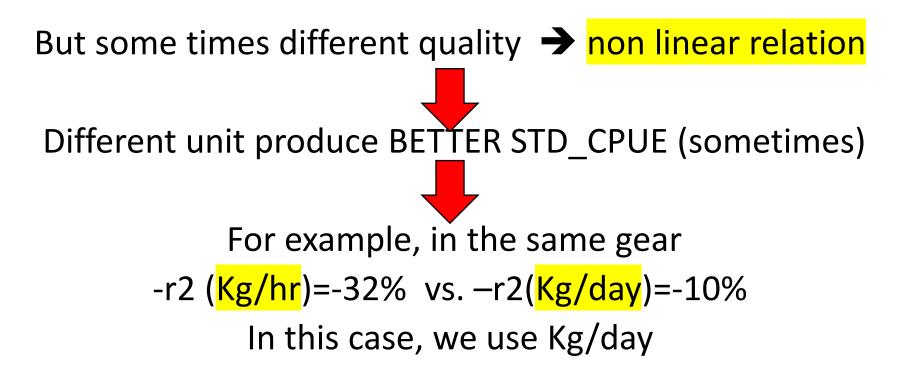

# Some interesting story about tuna longline CPUE (IOTC)


- Yellowfin catch (tuna LL) → very low (5%) (recent years)
   (piracy, reduction of boats as no fishers ← only old crew...)
- Before PS started, LL catch was highest.
- Should not use LL CPUE as catch is very low.
- But we still use CPUE as the best CPUE because LL (simple random sampling).
- So, the catch amount does not matter.




Why nominal CPUE is not used?

#### Because standardized CPUE is <u>directly</u> used for JABBA → affect JABBA results. <u>Nominal CPUE</u> is different from standardized CPUE, thus should not be used.








CPUE Unit → also relates to Good standardized CPUE

Kg/hour, Kg/day and Kg/haul basically proportional (linear relation) → produce similar STD CPUE



## Start 1 PM



# PC window 🗲 English

# → May be OK

### Results 28 nominal CPUE

|    |                   | Statist          | ical Divisio        | on                  |                               | Res               |         | ort samı<br>by set) | oling   |
|----|-------------------|------------------|---------------------|---------------------|-------------------------------|-------------------|---------|---------------------|---------|
|    | data set #        |                  | (1)                 | (1) (2) (3)         |                               |                   | (4)     |                     |         |
|    | q                 |                  | q1234               | q12                 | q3                            | q                 |         |                     |         |
| P  | Period (years)(*) |                  | 1971~2023<br>(n=29) | 1971~1994<br>(n=24) | 1995~2023<br>(n=19)           | Period<br>(years) |         | 2016~2023<br>(n=8)  |         |
|    | Covariates        |                  | Year ar             | nd Area             | year, Mo, area<br>and Mo*area | Covariates        | year, N | /lo, area and       | Mo*area |
| No | gear              | unit<br>(Kg per) |                     |                     |                               | No                | gear    | unit<br>(Kg per)    |         |
| 1  | MEGL              | day              |                     |                     |                               | 15                | APS     | day                 |         |
| 2  | WILGE             | hr               |                     |                     |                               | 16                | AFJ     | hr                  |         |
| 3  | MGL               | day              |                     |                     |                               | 17                | ВТ      | day                 |         |
| 4  | IVIGE             | hr               |                     |                     |                               | 18                | וט      | hr                  |         |
| 5  | ОВТ               | day              |                     |                     |                               | 19                | FAD     | day                 |         |
| 6  |                   | haul             |                     |                     |                               | 20                |         | haul                |         |
| 7  | PT                | day              |                     |                     |                               | 21                | LPS     | day                 |         |
| 8  |                   | haul             |                     |                     |                               | 22                |         | haul                |         |
| 9  | PS                | day              |                     |                     |                               | 23                | OBT     | day                 |         |
| 10 |                   | hr               |                     |                     |                               | 24                |         | hr                  |         |
| 11 | отн               | day              |                     |                     |                               | 25                | РТ      | day                 |         |
| 12 |                   | hr               |                     |                     |                               | 26                | •••     | hr                  |         |
| 13 |                   | day              |                     |                     |                               | 27                |         | day                 |         |
| 14 | ALL               | hr               |                     |                     |                               | 28                | TPS     | haul                |         |

#### **CPUE** standardization



Menu-driven software series (No. 1)

#### CPUE\_Manager (ver1.3.6) (2025) Manual

May, 2025 Tom NISHIDA (PhD) (Representative) aco20320@par.odn.ne.jp

Kazuharu Iwasaki (Software Engineer)

[MENU] <sup>©</sup> Menu-driven stock assessment software developing team(Japan)

https://www.esl.co.jp/products/menu

© All copyrights and patents are reserved by [MENU]

Note: The current version is 1.3.6. Some software images in this Manual are from older versions, But this is not a problem as they are the same.

## 2 GLM model for CPUE standardization

| 0 catch rate (%) | Model                                          | Short name       |
|------------------|------------------------------------------------|------------------|
| 0% $\sim$ 30%    | Log normal GLM                                 | Log normal model |
| 30% $\sim$       | Zero (0) inflated Delta 2 steps log normal GLM | Delta model      |

## Formula of 2 models

#### [A] Log normal GLM

log (CPUE + Constant) =Intercept + Year + Season + Area + Season\*Area

Categorical data + Other covariates (Max 3) + Error ~ N(0,  $\sigma^2$ )

See next page about Constant (0.1\*average of nominal CPUE)

#### [C] Delta 2 steps log normal model

1st step (delta model using logit model)

E [log{q/(1-q)}] = intercept + Year + Season + Area + Season\*Area

Categorical data + Other covariates (Max), where  $q(ratio of zero-CPUE)^{\sim}Binominal(\theta)$ 

2<sup>nd</sup> step (log normal model for non 0 CPUE)

log(CPUE)=Intercept + Year + Season + Area + Season\*Area

Categorical data + Other covariates (Max 3) + Error ~ N(0,  $\sigma^2$ )

MONTH→Season by Monsoon for CPUE standardization (Not systematic Q1~Q4)→ <u>more meaningful</u>

Change month to season by monsoon

Jan-Feb & Nov ~ Dec NE (NE monsoon)

Mar ~ April IM (Inter Monsoon)

May ~Oct SW (SW monsoon)

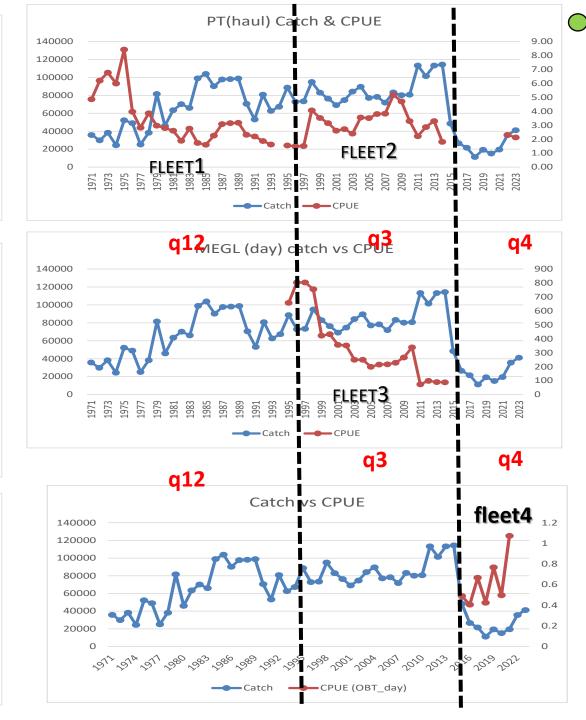
However, 3 season too rough

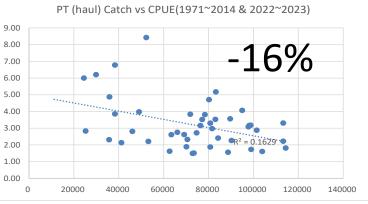
 $\rightarrow$  results  $\rightarrow$  **not sensitive**  $\rightarrow$  NG for ANOVA

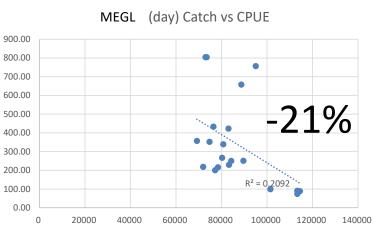
#### Month $\rightarrow$ <u>more sensitive</u> $\rightarrow$ good reflection for ANOVA

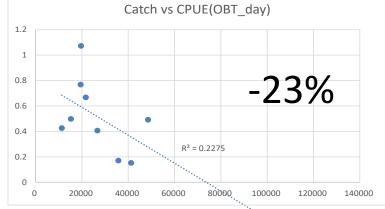
#### 4.3 Selection of Good CPUE

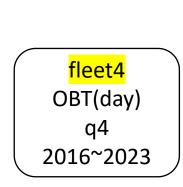
| 3    |  |
|------|--|
| best |  |

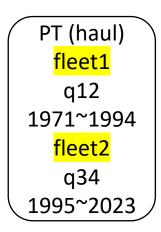

|    |          |               | Statistical      | Port sampling (set by set)    |                            |     |         |                  |                                                 |  |  |
|----|----------|---------------|------------------|-------------------------------|----------------------------|-----|---------|------------------|-------------------------------------------------|--|--|
|    | data     | set #         | (1)              | (2)                           | (3)                        | (4) |         |                  |                                                 |  |  |
|    |          | q             | q1234            | q12                           | q3                         | q4  |         |                  |                                                 |  |  |
|    | Period ( | years)(*)     | 1971~2023 (n=53) | 1971~1994 (n=24)              | 1995~2023 (n=19)           |     | (20     | 16~2023) (n      | =8)                                             |  |  |
|    | Cova     | riates        | Year and         | d Area                        | year, Mo, area and Mo*area |     | year, M | o, area and N    | Ao*area                                         |  |  |
| No | gear     | unit (Kg per) | Grey             | r2(%)<br>: negative r2 and Gi | reen : Selected            | No  | gear    | unit<br>(Kg per) | r2(%)<br>Grey : negative r2<br>Green : Selected |  |  |
| 1  | MEGL     | day           | NA               | NA                            | -21                        | 15  | ADC     | day              | 26                                              |  |  |
| 2  | MEGL     | hr            | NA               | NA                            | -6                         | 16  | APS     | hr               | 15                                              |  |  |
| 3  | MGL      | day           | 58               | 58                            | 36                         | 17  | BT      | day              | -7                                              |  |  |
| 4  | IVIGL    | hr            | NA               | NA                            | NA                         | 18  | Ы       | hr               | -1                                              |  |  |
| 5  | ОВТ      | day           | 30               | 2                             | 48                         | 19  | FAD     | day              | 22                                              |  |  |
| 6  |          | haul          | 27               | 2                             | -7                         | 20  | FAD     | haul             | 18                                              |  |  |
| 7  | PT       | day           | -13              | -35 (**)                      | 32                         | 21  | LPS     | day              | 70                                              |  |  |
| 8  |          | haul          | -16 (q123) (**)  | -32 (**)                      | 35                         | 22  | LPS     | haul             | 83                                              |  |  |
| 9  | - PS     | day           | 44               | 2                             | 77                         | 23  | OBT     | day              | -23                                             |  |  |
| 10 | FJ       | hr            | 35               | 19                            | 64                         | 24  |         | hr               | -21                                             |  |  |
| 11 | отн      | day           | 5                | 13                            | 0                          | 25  | РТ      | day              | 0                                               |  |  |
| 12 |          | hr            | 0                | 32                            | -7                         | 26  |         | hr               | 1                                               |  |  |
| 13 |          | day           | 62               | 44                            | 73                         | 27  | TDC     | day              | 73                                              |  |  |
| 14 | ALL      | hr            | 52               | 42                            | 59                         | 28  | TPS     | haul             | <b>72</b><br>82                                 |  |  |

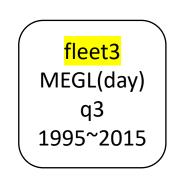

#### Summary of CPUE standardization

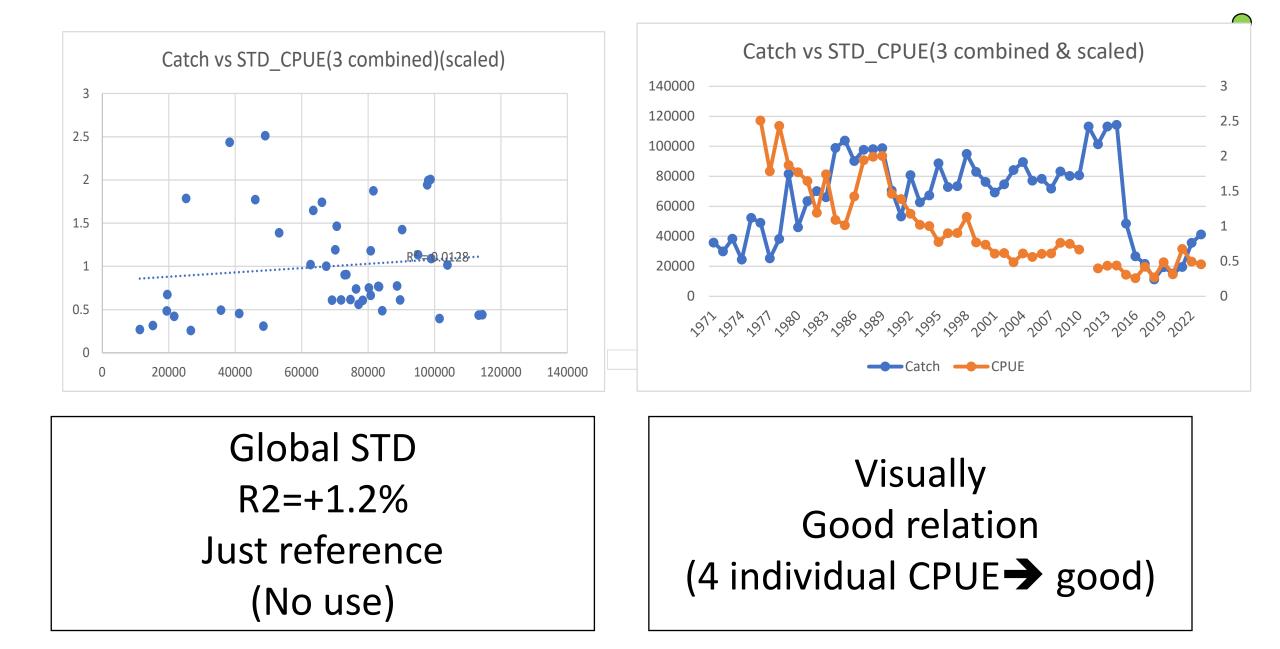

• Model


| Log normal                               | if 0 CPUE < 30%                  |                    |
|------------------------------------------|----------------------------------|--------------------|
| Delta log normal                         | if 0 CPUE >30%)                  |                    |
| <ul> <li>Covariates</li> </ul>           | [Yr + Mo] or [Yr] + [area] or [Y | r] + [Mo] + [area] |
| <ul> <li>Implementation</li> </ul>       | Menu-driven CPUE standardiz      | zation software    |
| Results                                  | see next page                    | OTH                |
| <ul> <li>Selected STD_CPUE(3)</li> </ul> | <mark>PT(haul) (q123),</mark>    | MECL 4%            |
|                                          | MEGL(q3) and OBT(day)(q4)        | PT 7%              |
|                                          | 1 major gear (PS)                | 8% PS              |
|                                          | 2 minor gears (PT+OBT)           | 55%                |
| -                                        | minor gears more SRS             | MGL<br>22%         |
|                                          |                                  |                    |


|               |                   |           | (SM) Results of s                | selected standardiz | ed CPUE for JABBA        |                             |                     |
|---------------|-------------------|-----------|----------------------------------|---------------------|--------------------------|-----------------------------|---------------------|
| Good to       | C                 |           | Source                           |                     |                          | Research<br>(Port sampling) |                     |
| have          | catcha            | -         | Catch                            |                     | tons                     |                             |                     |
| nave          | (refer to         | the text) | Effort                           |                     | Refer to the t           | ext                         |                     |
| a very        |                   |           | Covariate (CPUE standardization) | Year                | r and area               | Year, MC                    | ) and area          |
| -             | Actual            | Our case  | Gear compositions                | PS                  | (55%) + Mackerel Gillnet | (22%)+OTH(23%               | )                   |
| long          | q1<br>(1960-1974) |           | 1971                             |                     |                          |                             |                     |
| CPUE          |                   |           |                                  |                     |                          |                             |                     |
| CFUE          |                   | q12       |                                  | (1)                 | (2)<br>(q12)             |                             |                     |
| (53<br>years) | q2                | (n=24)    |                                  | (q12)               | PT haul                  |                             |                     |
|               | Ч <b>2</b>        | (11-2-4)  |                                  | not available       | SELECTED                 |                             |                     |
| vears)        |                   |           |                                  |                     |                          |                             |                     |
|               |                   |           | 1994                             |                     |                          |                             | _                   |
|               |                   |           | 1995                             |                     |                          |                             |                     |
|               |                   |           |                                  | (1)                 |                          | (3)                         |                     |
|               | q3                | q3        |                                  | (q34)               |                          | (q3)                        |                     |
|               | 45                | (n=21)    |                                  |                     |                          |                             |                     |
|               |                   |           |                                  | PT(haul)            |                          | MEGL (day)                  |                     |
|               |                   |           | 2015                             | r2=-16%             |                          | r2=-21%                     | (4) (q4)            |
|               |                   | q4        | 2016                             | SELECTED            |                          | SELECTED                    | OBT (day)           |
|               | q4                | (n=8)     | 2023                             |                     |                          |                             | r2=-23%<br>SELECTED |



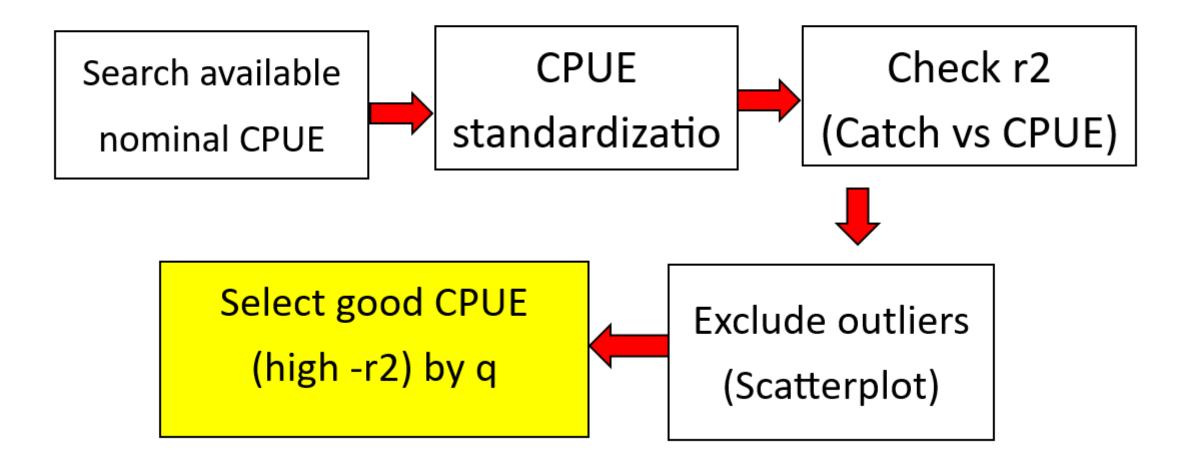












#### Note on selected standardized CPUE

 Same 4 STD\_CPUE can be used next 3~5 years if no big changes in fisheries affecting STD\_CPUE.

 3~5 years later and/or if there are some big changes on fisheries, we need to update and find the good STD\_CPUE again.

#### Flowchart to select good CPUE for JABBA



#### SM WG

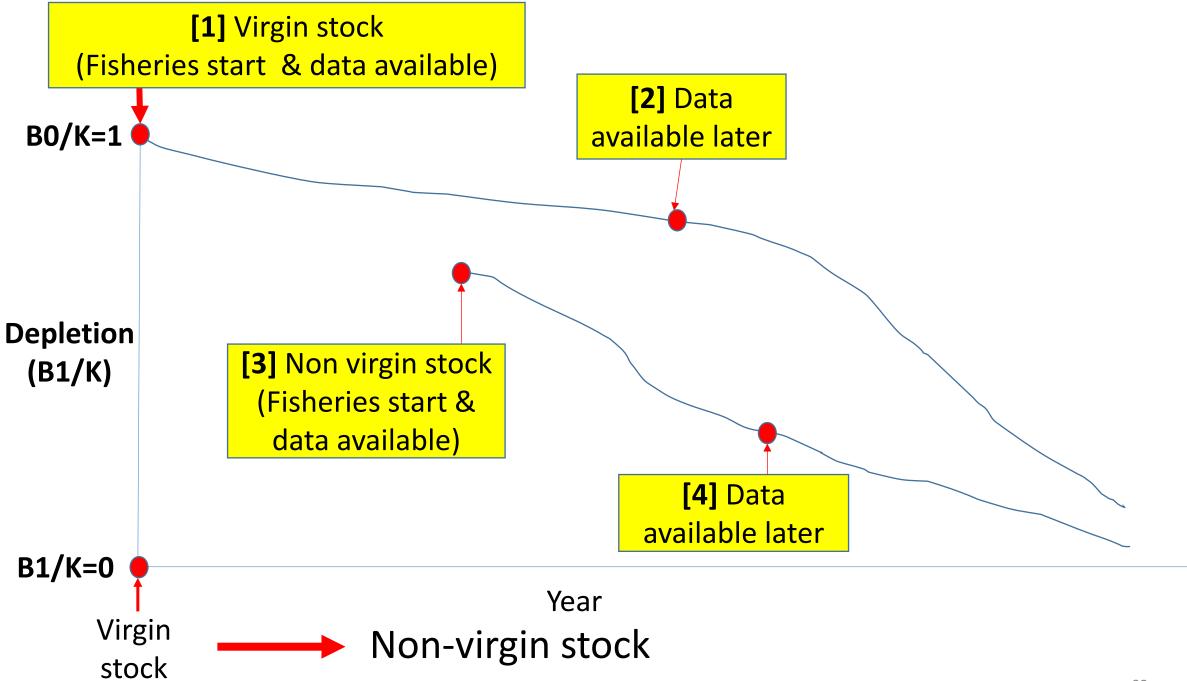
1. Introduction

#### 2. Data

- 3. Catch & Effort
- 4. Selection of good CPUE for JABBA
  - 4.1 Nominal CPUE
  - 4.2 CPUE standardization
  - 4.3 Selection of good CPUE
- 5. <mark>JABBA</mark>
  - 5.1 Implementation
  - 5.2 Let's try our SM data
  - 5.3 Comparisons with TB model
- 6. Practice & Homework
  - 6.1 JABBA
  - 6.2 CPUE standardization
  - 6.3 data process
- 7. Discussion, Summary and Future plan

# 5. JABBA

#### Contents (JABBA)


- 5.1 Implementation
- 5.2 Let's try our SM data
- 5.3 Comparisons with TB model

#### 5.1 Implementation

4 cases

#### What & why are 4 cases?

92



Implementation case [1]~[4]

## Case [1] → direct (normal) approach Vs. Case [2]~[4] → Scenario approach

#### Case [2]~[4] Why scenario approach ? Why not normal approach? Butterworth & Wang

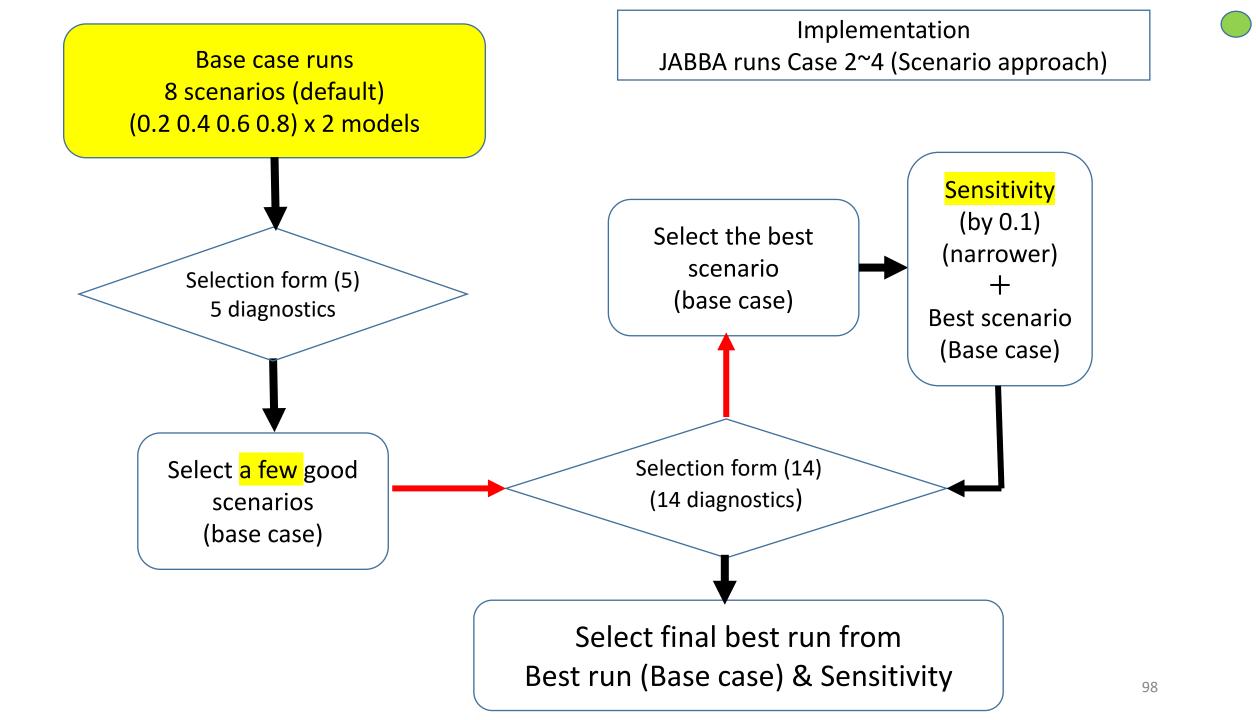
 To use direct (normal) estimation approach : Case [1]
 → Virgin stock & data available (Need long, stable & reliable data)
 → Tuna & BILL fish data (RFMO) 1950~ OK

**RFMO** Regional Fisheries Management Organization

#### Why scenario approach ? Why not direct approach? Nishida + Butterworth + Wang

- If fisheries start after virgin stock → B1/K cannot be estimated
- Problem [2]~[4] normal approach
  - → Seeded B1/K itself is estimated!

→ NG


Normally different estimated values

Need Scenario (robust) approach

Good for non virgin & data available later

| Initial   | Estimated |       |  |  |  |  |  |
|-----------|-----------|-------|--|--|--|--|--|
| Seeding   | B1        | /К    |  |  |  |  |  |
| values    | (almost   | same) |  |  |  |  |  |
| (B1/K)    | N         | G     |  |  |  |  |  |
| Depletion | Schaefer  | Fox   |  |  |  |  |  |
| 0.2       | 0.21      | 0.20  |  |  |  |  |  |
| 0.4       | 0.39      | 0.39  |  |  |  |  |  |
| 0.6       | 0.59      | 0.58  |  |  |  |  |  |
| 0.8       | 0.80      | 0.82  |  |  |  |  |  |

### How to implement cases [2]~[4]?



Set up scenarios for depletion (BO/K) Model Schaefer & Fox

(1) Default (no pre-knowledge of BO/K)

→ Default 4 B0/K (0.2 0.4 0.6 0.8) (to search wider range)

→ Then 8 scenarios 4B0/K x 2 models

#### (2) Pre-knowledge (search smaller range)

|             | Stock level   | B0/K           | # of scenario | total # |
|-------------|---------------|----------------|---------------|---------|
| Example 1 🗲 | likely low    | 0.2, 0.3 & 0.4 | 6             | 12      |
| Example 2 🗲 | likely middle | 0.4, 0.5 & 0.6 | 6             | 12      |
| Example 3 🗲 | likely high   | 0.7, 0.8 & 0.9 | 6             | 12      |

# 5.2 Let's try our SM data

#### **BAD NEWS**

It took a very long time (1 week) to find the best run

So, we cannot spend one week.

We will practice the last stage of runs

#### Selection form (5)→ Whole search work. Red Box → exploratory runs. Green BOX (good runs) is the final stage runs ← we will practice

|                  |           |           |                   |    |      |      |        | Strategy                       |      | 1st ( | individ | lual CF | PUE) |      |      |       |      |      | ind (a | verage | )    |      |      |       |
|------------------|-----------|-----------|-------------------|----|------|------|--------|--------------------------------|------|-------|---------|---------|------|------|------|-------|------|------|--------|--------|------|------|------|-------|
|                  |           |           |                   |    |      |      |        | Serial #                       | 1    | 2     | 3       | 4       | 5    | 6    | 7    | 8     | 9    | 10   | 11     | 12     | 13   | 14   | 15   | 16    |
|                  |           |           |                   |    |      |      |        | Scenario #                     | 1    | 2     | 3       | 4       | 5    | 6    | 1    | 2     | 3    | 4    | 5      | 6      | 7    | 8    | 9    | 10    |
|                  |           |           |                   |    |      | Kg   |        | depletion                      | 0.6  | 0.6   | 0.6     | 0.2     | 0.4  | 0.4  | 0.4  | 0.4   | 0.2  | 0.2  | 0.4    | 0.4    | 0.6  | 0.6  | 0.8  | 0.8   |
| Source           | Perioc    | 1         | fleet             | n= | Gear | per  | r2 (%) | Model<br>s(Schaefer)<br>f(Fox) | s    | S     | S       | S       | S    | f    | s    | s     | s    | f    | s      | f      | s    | f    | S    | f     |
|                  |           |           |                   |    |      |      |        |                                | SM-  | SM-   | SM-     | SM-     | SM-  | SM-  | SM-  | SM-   | SM-  | SM-  | SM-    | SM-    | SM-  | SM-  | SM-  | SM-   |
|                  |           |           |                   |    |      |      |        | run ID                         | ID1- | ID2-  | ID3-    | ID4-    | ID5- | ID6- | AV1- | 1     |      |      |        |        |      | AV8- |      | AV10  |
|                  |           |           |                   |    |      |      |        |                                | 0.6s | 0.6s2 | 0.6s3   | 0.2s    | 0.4s | 0.4f | 0.4s | 0.4s2 | 0.2s | 0.2f | 0.4s   | 0.4f   | 0.6s | 0.6f | 0.8s | -0.6f |
|                  | 1971~1994 | q12       | fleet1            | 24 |      |      |        |                                |      |       |         |         |      |      |      |       |      |      | A      | ve     |      |      |      |       |
| Statistical      | 400582022 |           | <i>(</i> <b>1</b> | -  | PT   | haul | -16    |                                |      |       |         |         |      |      |      |       |      |      |        |        |      |      |      |       |
| Division         | 1995~2023 | q3        | fleet2            | 21 |      |      |        | Assignment                     |      |       |         |         |      |      |      |       |      |      | Δ      | ve     |      |      |      |       |
|                  | 2016~2023 | q3        | fleet3            | 21 | MEGL | day  | -21    | of CPUE                        |      |       |         |         |      |      |      |       |      |      | Î      | ve     |      |      |      |       |
| Port<br>sampling | 2016~2023 | q4        | fleet4            | 8  | ОВТ  | day  | -23    |                                |      |       |         |         |      |      |      |       |      |      | А      | ve     |      |      |      |       |
|                  |           |           |                   |    |      | •    |        | Kobe plot                      | ok   | ok    | ok      | ok      | ok   | ng   | ok   | ok    | ng   | ng   | ok     | ok     | ok   | ok   | ok   | ok    |
|                  |           |           |                   |    |      |      |        | CPUE                           | ng   | ng    | ng      | ng      | ng   | ng   | ng   | ng    | ok   | ok   | ok     | ok     | ok   | ok   | ok   | ok    |
|                  |           |           |                   |    |      |      |        | Retrospective<br>analyses      | ok   | ok    | ok      | ok      | ng   | ng   | ok   | ok    | ng   | ng   | ok     | ok     | ok   | ok   | ok   | ok    |
|                  | ſ         | Diagnoses | & Results         | s  |      |      |        | Convergence                    | ok   | ok    | ok      | ok      | ok   | ok   | ok   | ok    | ok   | ok   | ok     | ng     | ok   | ok   | ok   | ok    |
|                  |           |           |                   |    |      |      |        | retro&hind<br>(Table)          | ok   | ok    | ok      | ok      | ok   | ok   | ok   | ok    | ok   | ok   | ok     | ok     | ok   | ok   | ok   | ok    |
|                  |           |           |                   |    |      |      |        | Results                        | ng   | ng    | ng      | ng      | ng   | ng   | ng   | ng    | ng   | ng   | ok     | ng     | ok   | ok   | ok   | ok    |

#### Set up folders & files 0.4s is prepared. You need to set up all others

| >           | • Da       | nta Practic | :e >     | JABBA   | > (  | 2) Short macke   | erel (SM) | (Thailand) >      | Base | case >   |
|-------------|------------|-------------|----------|---------|------|------------------|-----------|-------------------|------|----------|
| []          | <u>(</u> ) | E I         | Î        | ↑↓ 並べ替  | 春え ~ | ☰ 表示 ~           | •••       |                   |      |          |
| □ 名         | 前          |             | ^        |         |      | 更新日時             |           | 種類                |      | サイズ      |
| 0.          | .4         |             |          |         |      | 2025/05/16 18:53 | 3         | ファイル フォルダー        |      |          |
| <b>×</b> (1 | l) Selec   | tion form ( | 5)       |         |      | 2025/05/17 13:10 | )         | Microsoft Excel 🤈 | )—   | 14 KB    |
| × (2        | 2) Selec   | tion form ( | 14)(base | e case) |      | 2025/05/17 5:57  |           | Microsoft Excel 🖓 | )—   | 1,133 KB |

# Input data sets (available in 0.4s folder, Base case)

(1)Catch(2)CPUE(3)CV

## Catch (1971~2023)

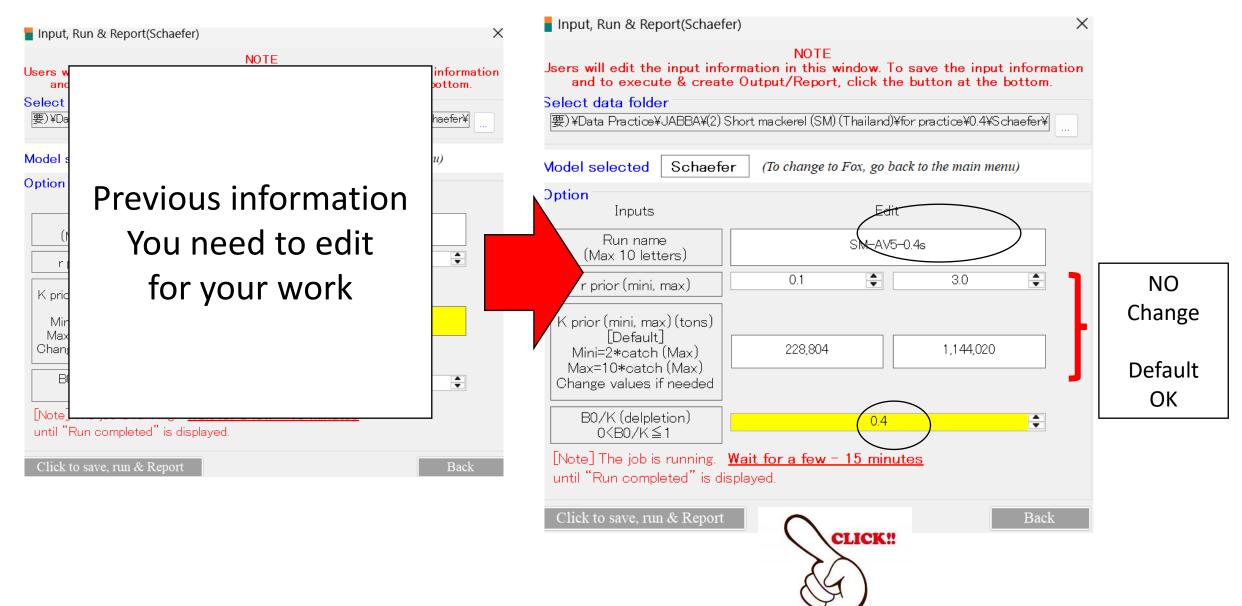
| _        | A    | В      |
|----------|------|--------|
|          |      | all    |
| 2        | 1971 | 35870  |
| 3        | 1972 | 29930  |
| 4        | 1973 | 38343  |
| 5        | 1974 | 24481  |
| 6        | 1975 | 52295  |
| 7        | 1976 | 49069  |
| 8        | 1977 | 25247  |
| 9        | 1978 | 38332  |
| 10       | 1979 | 81623  |
| 11       | 1980 | 46063  |
| 12       | 1981 | 63486  |
| 13       | 1982 | 70147  |
| 14       | 1983 | 66106  |
| 15       | 1984 | 99008  |
| 16       | 1985 | 103905 |
| 17       | 1986 | 90259  |
| 18       | 1987 | 97798  |
| 19       | 1988 | 98106  |
| 20       | 1989 | 98782  |
| 21       | 1989 | 70583  |
| 22       | 1991 | 53221  |
| 22       | 1991 | 80780  |
| 24       | 1993 | 62701  |
| 24       | 1993 | 67393  |
|          |      | 88715  |
| 26       | 1995 |        |
| 27       | 1996 | 72935  |
| 28       | 1997 | 73459  |
| 29       | 1998 | 95017  |
| 30       | 1999 | 83044  |
| 31       | 2000 | 76392  |
| 32       | 2001 | 69170  |
| 33       | 2002 | 74723  |
| 34       | 2003 | 84244  |
| 35       | 2004 | 89620  |
| 36       | 2005 | 77161  |
| 37       | 2006 | 78415  |
| 38       | 2007 | 71885  |
| 39       | 2008 | 83292  |
| 40       | 2009 | 80225  |
| 41       | 2010 | 80761  |
| 42       | 2011 | 113283 |
| 43       | 2012 | 101478 |
| 44       | 2013 | 113291 |
| 45       | 2014 | 114402 |
| 46       | 2015 | 48522  |
| 47       | 2016 | 26658  |
| 48       | 2017 | 21655  |
| 49       | 2018 | 11307  |
| 50       | 2019 | 19423  |
| 51       | 2019 | 15225  |
| 52       | 2020 | 19598  |
| 52<br>53 | 2021 | 35708  |
| 53<br>54 | 2022 |        |
|          | 2023 | 41219  |

| 2  | А    |    | B       |          | С       | D          | E        |      |     |
|----|------|----|---------|----------|---------|------------|----------|------|-----|
| 1  | yr   | f: | (PTh12) | f2       | (PTh34) | f3(MEGLd3) | f4(OBTd4 | 1)   |     |
| 2  | 1971 | L  | 4.87    |          |         |            |          |      |     |
| 3  | 1972 | 2  | 6.2     |          |         |            |          |      |     |
| 4  | 1973 | 3  | 6.78    |          |         |            |          |      |     |
| 5  | 1974 | Ļ  | 5.99    |          |         |            |          |      |     |
| 5  | 1975 | 5  | 8.42    |          |         |            |          |      |     |
| 7  | 1976 |    | 3.98    |          |         |            |          |      |     |
| 3  | 1977 |    | 2.83    |          |         |            |          |      |     |
| 9  | 1978 |    | 3.86    |          |         |            |          |      |     |
| .0 | 1979 |    | 2.97    |          |         |            |          |      |     |
| .1 | 1980 |    | 2.81    |          |         | 12         |          |      |     |
| .1 | 1980 |    | 2.61    |          | - C     | 12         |          |      |     |
|    |      |    |         |          |         |            |          |      |     |
| .3 | 1982 |    | 1.89    | -        |         |            |          |      |     |
| .4 | 1983 |    | 2.76    | -        |         |            |          |      |     |
| .5 | 1984 |    | 1.73    | _        |         |            |          |      |     |
| .6 | 1985 |    | 1.61    |          |         |            |          |      |     |
| .7 | 1986 |    | 2.26    |          |         |            |          |      |     |
| .8 | 1987 |    | 3.08    |          |         |            |          |      |     |
| .9 | 1988 |    | 3.16    |          |         |            |          |      |     |
| 0  | 1989 |    | 3.18    |          |         |            |          |      |     |
| 1  | 1990 | )  | 2.32    |          |         |            |          |      |     |
| 2  | 1991 |    | 2.2     |          |         |            |          |      |     |
| 3  | 1992 | 2  | 1.87    |          |         |            |          |      |     |
| 4  | 1993 | 3  | 1.62    |          |         |            |          |      |     |
| 5  | 1994 | Ļ. | 1.59    |          |         |            |          |      |     |
| 6  | 1995 | 5  |         |          | 1.56    | 657.77     | 7        |      |     |
| 7  | 1996 | 5  |         |          | 1.49    | 803.99     | 9        |      |     |
| 8  | 1997 | 1  |         |          | 1.51    | 803.96     | 5        |      |     |
| 9  | 1998 | 3  |         |          | 4.07    | 756        | 5        |      |     |
| 0  | 1999 | )  |         |          | 3.53    | 422.78     | 3        |      |     |
| 1  | 2000 | )  |         |          | 3.16    | 433.03     | 3        |      |     |
| 2  | 2001 | L  |         |          | 2.62    | 357.02     | 2        |      |     |
| 3  | 2002 | 2  |         |          | 2.72    | 352.16     | 5        |      |     |
| 4  | 2003 | 3  |         |          | 2.4     | 250.08     | 3        |      |     |
| 5  | 2004 | Ļ  |         |          | 3.56    | 250.29     | 9        | 20   |     |
| 6  | 2005 | 5  |         |          | 3.52    | 199.66     | 5        | q3   |     |
| 7  | 2006 | 5  |         |          | 3.81    |            |          |      |     |
| 8  | 2007 |    |         |          | 3.84    |            |          |      |     |
| 9  | 2008 |    |         |          | 5.17    |            |          |      |     |
| 0  | 2009 |    |         |          | 4.71    |            |          |      |     |
| 1  | 2010 |    |         |          | 3.3     |            |          |      |     |
| 2  | 2011 |    |         |          | 2.22    |            |          |      |     |
| 3  | 2012 |    |         |          | 2.87    |            |          |      |     |
| 4  | 2012 |    |         |          | 3.3     |            |          |      |     |
| 5  | 2013 |    |         |          | 1.81    | 88.56      |          | 0.96 |     |
| 6  | 2014 |    |         | $\vdash$ | 1.01    | 00.50      | -        | 0.98 |     |
| -7 | 201  |    |         |          |         |            | -        | 0.49 |     |
| -/ | 2010 |    |         | -        |         |            |          | 0.41 |     |
|    |      |    |         | -        |         |            |          |      |     |
| 9  | 2018 |    |         | -        |         |            |          | 0.43 |     |
| 0  | 2019 |    |         | -        |         |            |          | 0.77 | ~ 1 |
| 1  | 2020 |    |         |          |         |            |          | 0.5  | q4  |
| 2  | 2021 |    |         |          |         |            |          | 1.07 | '   |
| 3  | 2022 | 2  |         |          | 2.31    |            |          |      |     |
| 4  | 2023 |    |         |          | 2.13    |            |          |      |     |

| CPUE(4 fleets) |        |      |           |           |            |           |  |  |
|----------------|--------|------|-----------|-----------|------------|-----------|--|--|
|                | [      | C    | PUE code  |           |            |           |  |  |
|                |        |      | f1 fleet1 |           |            |           |  |  |
|                |        |      | PT gear   |           |            |           |  |  |
|                |        |      | h haul    |           |            |           |  |  |
|                | 12 q12 |      |           |           |            |           |  |  |
|                |        |      |           |           |            |           |  |  |
|                |        | А    |           | С         | D          | E         |  |  |
| 1              | yr     |      | f1(PTh12) | f2(PTh34) | f3(MEGLd3) | f4(OBTd4) |  |  |
| 2              |        | 1971 | 4.87      |           |            |           |  |  |
| 3              |        | 1972 | 6.2       |           |            |           |  |  |
| 4              |        | 1973 | 6.78      |           |            |           |  |  |
| 5              |        | 1974 | 5.99      |           |            |           |  |  |
| 6              |        | 1975 | 8.42      |           |            |           |  |  |
| 7              |        | 1976 | 3.98      |           |            |           |  |  |
| 8              |        | 1977 | 2.83      |           |            |           |  |  |

#### CV For CPUE Default 0.2 (same as ASPIC)

| - | Α    | В         | C         | D          | E         |     |
|---|------|-----------|-----------|------------|-----------|-----|
| y |      | f1(PTh12) | f2(PTh34) | f3(MEGJd4) | f4(OBTd4) |     |
|   | 1971 | 0.2       |           |            |           |     |
|   | 1972 | 0.2       |           |            |           |     |
|   | 1973 | 0.2       |           |            |           |     |
| L | 1974 | 0.2       |           |            |           |     |
| L | 1975 | 0.2       |           |            |           |     |
| L | 1976 | 0.2       |           |            |           |     |
| L | 1977 | 0.2       |           |            |           |     |
| L | 1978 | 0.2       |           |            |           |     |
| L | 1979 | 0.2       |           |            |           |     |
|   | 1980 | 0.2       |           |            |           |     |
| L | 1981 | 0.2       |           |            |           | q12 |
| L | 1982 | 0.2       |           |            |           | 9   |
|   | 1983 | 0.2       |           |            |           |     |
|   | 1984 | 0.2       |           |            |           |     |
|   | 1985 | 0.2       |           |            |           |     |
|   | 1986 | 0.2       |           |            |           |     |
|   | 1987 | 0.2       |           |            |           |     |
|   | 1988 | 0.2       |           |            |           |     |
|   | 1989 | 0.2       |           |            |           |     |
|   | 1990 | 0.2       |           |            |           |     |
|   | 1991 | 0.2       |           |            |           |     |
|   | 1992 | 0.2       |           |            |           |     |
|   | 1993 | 0.2       |           |            |           |     |
|   | 1994 | 0.2       |           |            |           |     |
|   | 1995 |           | 0.2       | 0.2        |           |     |
|   | 1996 |           | 0.2       | 0.2        |           |     |
|   | 1997 |           | 0.2       | 0.2        |           |     |
|   | 1998 |           | 0.2       | 0.2        |           |     |
|   | 1999 |           | 0.2       | 0.2        |           |     |
|   | 2000 |           | 0.2       | 0.2        |           |     |
|   | 2001 |           | 0.2       | 0.2        |           |     |
|   | 2002 |           | 0.2       | 0.2        |           |     |
|   | 2003 |           | 0.2       | 0.2        |           |     |
|   | 2004 |           | 0.2       | 0.2        |           | q3  |
|   | 2005 |           | 0.2       | 0.2        |           | •   |
|   | 2006 |           | 0.2       | 0.2        |           |     |
|   | 2007 |           | 0.2       | 0.2        |           |     |
|   | 2008 |           | 0.2       | 0.2        |           |     |
|   | 2009 |           | 0.2       | 0.2        |           |     |
|   | 2010 |           | 0.2       | 0.2        |           |     |
|   | 2011 |           | 0.2       | 0.2        |           |     |
|   | 2012 |           | 0.2       | 0.2        |           |     |
|   | 2013 |           | 0.2       | 0.2        |           |     |
| t | 2014 |           | 0.2       | 0.2        | 0.2       |     |
| F | 2015 |           | 0.1       |            | 0.2       |     |
|   | 2015 |           |           |            | 0.2       |     |
| F | 2010 |           |           |            | 0.2       |     |
| F | 2017 |           |           |            | 0.2       |     |
| ⊢ | 2018 |           |           |            | 0.2       | - I |
| - | 2019 |           |           |            | 0.2       | q4  |
| ⊢ | 2020 |           |           |            | 0.2       | ~   |
| - | 2021 |           | 0.2       |            | 0.2       |     |
|   |      |           | . U.Z     |            |           |     |


#### Let's try 0.4s together then you do the rest

This Selection form (5) is available in Data Practice folder

|                  | Strategy                   |     |        |    |            |           |        |                                |      |
|------------------|----------------------------|-----|--------|----|------------|-----------|--------|--------------------------------|------|
|                  |                            |     |        |    |            |           |        | Serial #                       | 11   |
|                  | Period                     |     | fleet  | n= | Gear       | Kg<br>per | r2 (%) | Scenario #                     | 5    |
|                  |                            |     |        |    |            |           |        | depletion                      | 0.4  |
| Source           |                            |     |        |    |            |           |        | Model<br>s(Schaefer)<br>f(Fox) | s    |
|                  |                            |     |        |    |            |           |        | run ID                         | SM-  |
|                  |                            |     |        |    |            |           |        |                                | AV5- |
|                  |                            |     |        |    |            |           |        |                                | 0.4s |
|                  | 1971~1994                  | q12 | fleet1 | 24 | PT<br>MEGL | haul      |        |                                |      |
| Statistical      | 1995~2023                  | q3  | fleet2 | 21 |            |           | -16    |                                |      |
| Division         |                            |     |        |    |            |           |        | Assignment                     |      |
|                  | 2016~2023                  | q3  | fleet3 | 21 |            | day       | -21    | of CPUE                        |      |
| Port<br>sampling | 2016~2023                  | q4  | fleet4 | 8  | ОВТ        | day       | -23    |                                |      |
|                  |                            |     |        |    |            |           |        | Kobe plot                      |      |
|                  | CPUE                       |     |        |    |            |           |        |                                |      |
|                  | Retrospectiv<br>e analyses |     |        |    |            |           |        |                                |      |
|                  | Convergence                |     |        |    |            |           |        |                                |      |
|                  | retro&hind<br>(Table)      |     |        |    |            |           |        |                                |      |
|                  | Results                    |     |        |    |            |           |        |                                |      |

## JABBA runs

| JABBA_Manager                                |                   | mackerel (SM) (Thailand) > E<br>並べ替え ~ = 表示 ~ ・・・ | Base case > 0.4 >   | Schaefer > |
|----------------------------------------------|-------------------|---------------------------------------------------|---------------------|------------|
|                                              | ○ 名前              | 更新日時                                              | 種類                  | サイズ        |
| JABBA_Manager(ver1.3.6)(2025)                | <b>source</b>     | 2025/05/16 18:53                                  | ファイル フォルダー          |            |
| Base case & sensitivity                      | 🛛 catch           | 2025/04/21 7:06                                   | Microsoft Excel CSV | 1 KB       |
|                                              |                   | 2025/04/21 10:00                                  | Microsoft Excel CSV | 1 KB       |
| Schaefer CLICK:                              | Xa CV             | 2025/04/21 10:00                                  | Microsoft Excel CSV | 1 KB       |
| Fox                                          | JABBA_interface.R | 2024/09/18 15:45                                  | R ファイル              | 5 KB       |
| Selection of<br>the best run                 |                   |                                                   |                     |            |
| Linkage to Kobe I+II<br>menu-driven software |                   |                                                   |                     |            |
| Manual Close                                 | Import Scl        | haefer folder                                     |                     |            |
|                                              |                   |                                                   |                     |            |



# Takes 5-15 minutes depending on your PC

nput, Run & Report(Schaefer)

#### NOTE

Users will edit the input information in this window. To save the input information and to execute & create Output/Report, click the button at the bottom.

Select data folder

要) ¥Data Practice¥JABBA¥(2) Short mackerel (SM) (Thailand)¥for practice¥0.4¥Schaefer¥

Model selected

Schaefer

(To change to Fox, go back to the main menu)

| ) <b>ption</b><br>Inputs                                                                                       |         | Edit               | Г         | $\frown$ |
|----------------------------------------------------------------------------------------------------------------|---------|--------------------|-----------|----------|
| Run name<br>(Max 10 letters)                                                                                   |         | SM-AV5-0.4         | ls        | $\cup$   |
| r prior (mini, max)                                                                                            | 0.1     | ▲<br>▼             | 3.0       | •        |
| K prior (mini, max) (tons)<br>[Default]<br>Mini=2*catch (Max)<br>Max=10*catch (Max)<br>Change values if needed | 228,804 |                    | 1,144,020 |          |
| B0/K (delpletion)<br>0 <b0 k≦1<="" td=""><td></td><td>0.40</td><td></td><td>×</td></b0>                        |         | 0.40               |           | ×        |
| [Note] The job is running.<br>until "Run completed" is d                                                       |         | <u>15 minute</u> : | <u>5</u>  |          |
| Click to save run & Report                                                                                     |         |                    |           | Back     |

111

# Results (very deep in the folder)



### Report\_SM-AV5-0.4s (Schaefer)

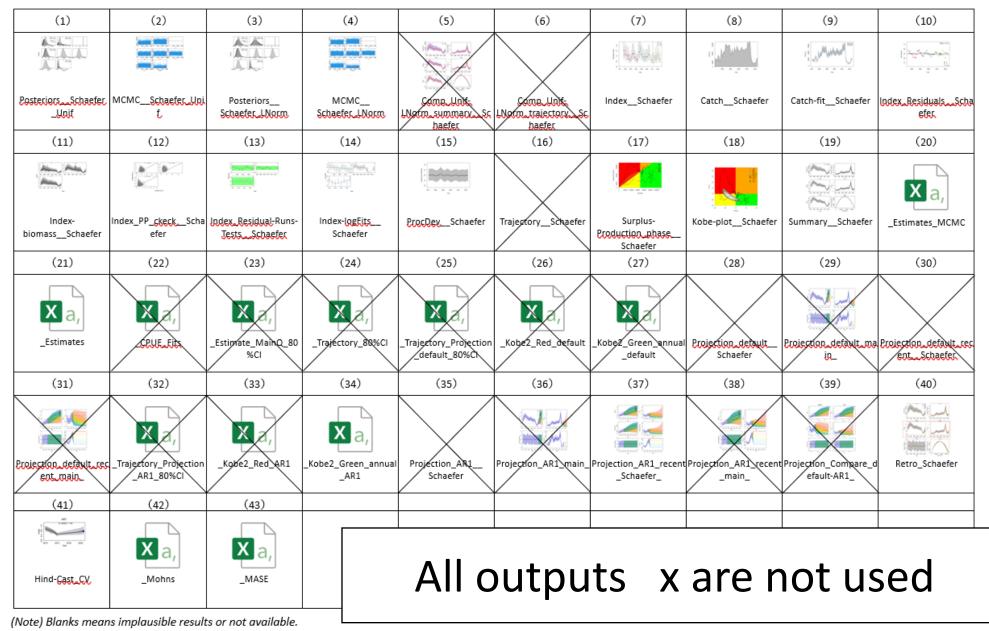
Contents

Output

- Summary of results & diagnoses
- 1. Convergence

Heidelberger and Welch Statistical test (MCMC)

- 2. Model fit
  - 2.1 CPUE Residuals (Randomness & outliers)
  - 2.2 RMSE (Root Mean Square Error)
  - 2.3 Prior to Posterior Median/Variance Ratio (PPMR/PPVR)
  - 2.4 Posterior Predictive Check (PPC)
- 3. Retrospective analyses (model mis-specification)
- 4. Hindcast analyses (prediction power)
- 5. Estimated parameter values
- 6. Visual inspection
- 7. Next step (Selection of Schaefer or Fox)

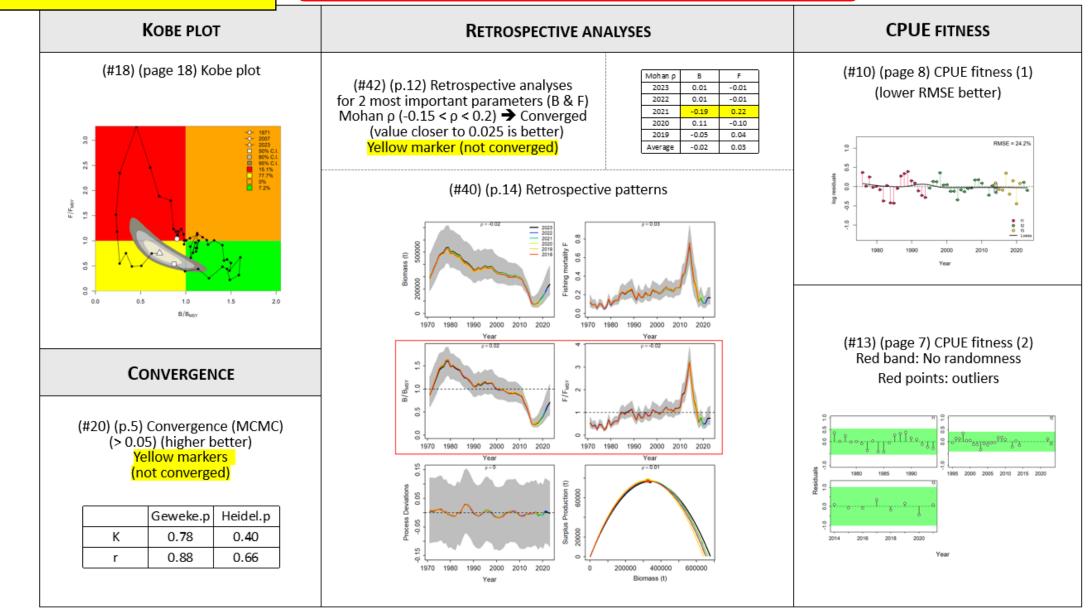

SM AVE5 individual Scenario #5 Run # 0.4S

SM-AV5-0.4s(Schaefer)

Note: Sometimes there are blank figures and/or tables due to space limitations. In such a case, please copy and paste from the original output files located one before this Report folder). If there are no outputs, please leave it empty.

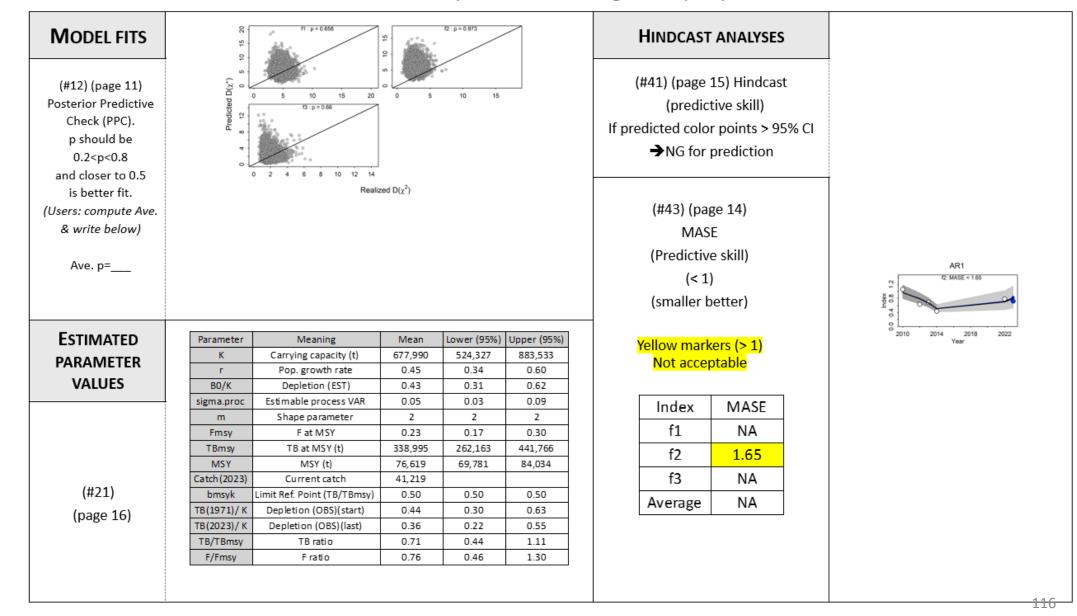
## Page 2

#### Output (43 files) (24 files are used in this Report, while not for 19 files with X)




114

 $\bigcirc$ 


## Page 3 (most important)

#### Summary of results & diagnoses (1/2) (Key diagnoses)



## Page 4 (most important)

#### Summary of results & diagnoses (2/2)



 $\bigcirc$ 

# From page 5~19 Detail explanation of results

Last page 20 For next step Selection form (to be explained later) How to evaluate the results ? 5 Key diagnoses

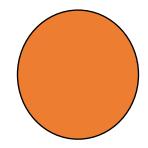
## Visual inspection (3 diagnoses)

(1) Kobe plot

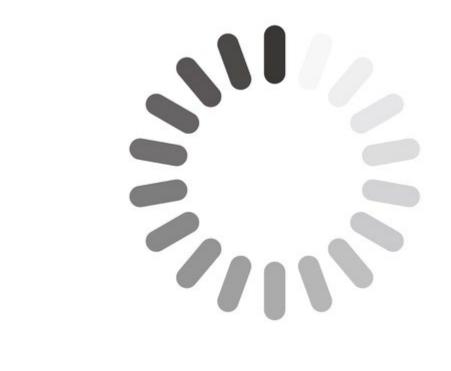
- (2) CPUE (Autocorrelation) (green)
- (3) Retrospective pattern (B & F)

Numerical inspection (2 diagnoses)

(4) Convergence


(5) Retro & Hind cast Table

|                           | 5 Quick                                         | diagnostics (r                                                                                             | efer to Report or Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nual for details)                                                                                     |  |  |  |  |  |  |  |
|---------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Turne                     | Contonto                                        | Critoria                                                                                                   | Judgment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |  |  |  |  |  |  |  |
| Туре                      | Contents                                        | Criteria                                                                                                   | ОК                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NG                                                                                                    |  |  |  |  |  |  |  |
| Kobe plot                 | Stock status                                    | Should reflect<br>the plausible<br>stock status                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Too optimistic                                                                                        |  |  |  |  |  |  |  |
| Time series re            | esidual CPUE                                    | No<br>autocorrelation,<br>i.e., time series<br>patterns of CPUE<br>should be<br>random and no<br>patterns. | PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTh12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12<br>PTTH12 | 9<br>9<br>9<br>1<br>1<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9      |  |  |  |  |  |  |  |
|                           |                                                 | Outliers                                                                                                   | ОК                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | One outlier<br>Remove then may become green                                                           |  |  |  |  |  |  |  |
| Retrospective<br>analyses | Justification<br>of JABBA<br>runs               | Retrospective<br>patterns should<br>be similar<br>(especially for<br>B/Bmsy &<br>F/Fmsy)                   | $V_{WW}$ Yes<br>$V_{V} = W$ $V_{V} = W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                              |  |  |  |  |  |  |  |
| Convergence               | All<br>parameters<br>are properly<br>estimated. | Non-significant in<br>Geweke p<br>& Welch p tests                                                          | NG for yellow markers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Geweke.p         Heidel.p           K         0.04         0.22           r         0.97         0.56 |  |  |  |  |  |  |  |


Let's see results one by one

## do you have this ? If so, complete all Selection form (5)

|                  |           |                                |             |     |        |                                |     | Strategy                   |      |
|------------------|-----------|--------------------------------|-------------|-----|--------|--------------------------------|-----|----------------------------|------|
|                  |           |                                |             |     |        |                                |     | Serial #                   | 11   |
|                  |           |                                |             |     |        |                                |     | Scenario #                 | 5    |
|                  |           |                                |             |     |        | Kg                             |     | depletion                  | 0.4  |
| Source           | Perioc    | 'eriod   tleet   n=   Gear   ¯ |             | per | r2 (%) | Model<br>s(Schaefer)<br>f(Fox) | s   |                            |      |
|                  |           |                                |             |     |        |                                |     |                            | SM-  |
|                  |           |                                |             |     |        |                                |     | run ID                     | AV5- |
|                  |           |                                |             |     |        |                                |     |                            | 0.4s |
|                  | 1971~1994 | q12                            | fleet1      | 24  |        |                                |     |                            |      |
| Statistical      |           |                                |             |     | PT     | haul                           | -16 |                            |      |
| Division         | 1995~2023 | q3                             | fleet2      | 21  |        |                                |     | Assignment                 |      |
|                  | 2016~2023 | q3                             | fleet3      | 21  | MEGL   | day                            | -21 | of CPUE                    |      |
| Port<br>sampling | 2016~2023 | q4                             | fleet4      | 8   | ОВТ    | day                            | -23 |                            |      |
|                  |           |                                |             |     |        |                                |     | Kobe plot                  | ok   |
|                  |           |                                |             |     |        |                                |     | CPUE                       | ok   |
|                  | г         | iagnoses                       | : & Result  | c   |        |                                |     | Retrospectiv<br>e analyses | ok   |
|                  | 2         | ing notes                      | , et nesent | -   |        |                                |     | Convergence                | ok   |
|                  |           |                                |             |     |        |                                |     | retro&hind<br>(Table)      | ok   |
|                  |           |                                |             |     |        |                                |     | Results                    | ok   |



# You are now working



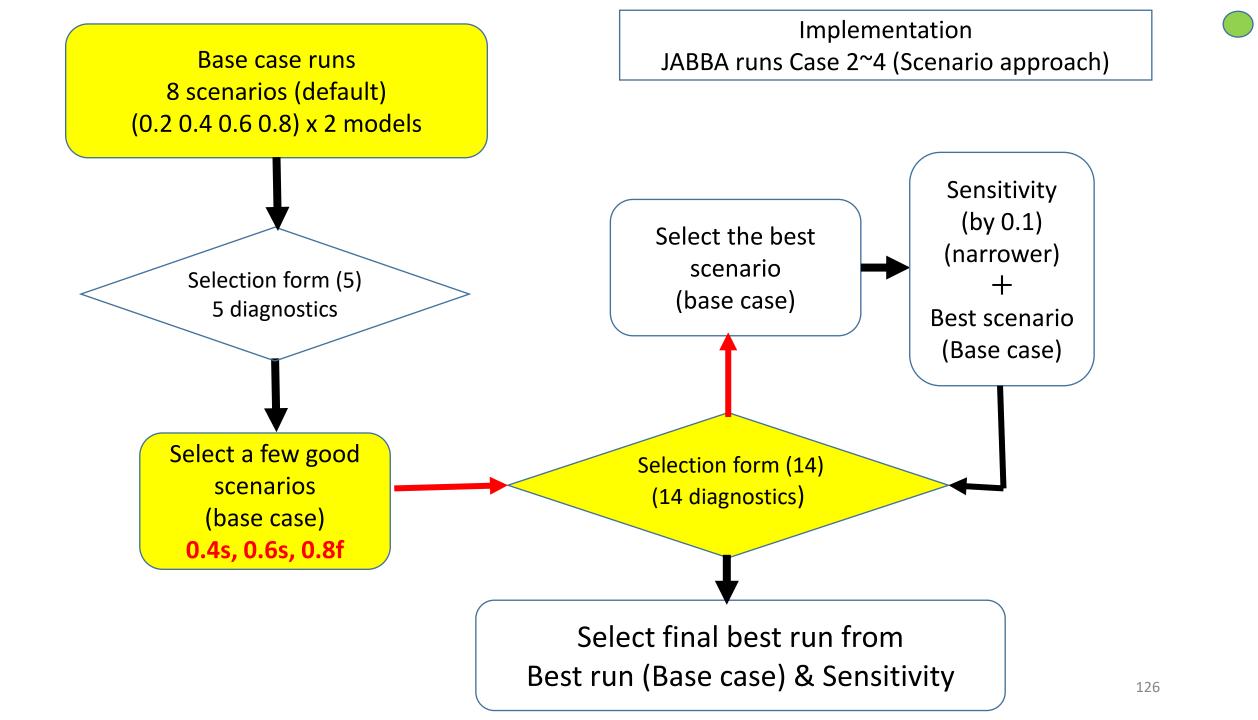
|                |                         |           |          |            |    |      |      |        | Serial #<br>Scenario #         | 11<br>5      | 12<br>6 | 13<br>7 | 14<br>8      | 15<br>9 | 16<br>10      |
|----------------|-------------------------|-----------|----------|------------|----|------|------|--------|--------------------------------|--------------|---------|---------|--------------|---------|---------------|
| You might have |                         |           |          |            |    |      | Kg   |        | depletion                      | 0.4          | 0.4     | 0.6     | 0.6          | 0.8     | 0.8           |
| different      | Source                  | Perioc    | 1        | fleet      | n= | Gear | per  | r2 (%) | Model<br>s(Schaefer)<br>f(Fox) | S            | f       | s       | f            | s       | f             |
| results        |                         |           |          |            |    |      |      |        |                                | SM-          | SM-     | SM-     | SM-          | SM-     | SM-           |
|                |                         |           |          |            |    |      |      |        | run ID                         | AV5-<br>0.4s |         |         | AV8-<br>0.6f |         | AV10<br>-0.6f |
|                |                         | 1971~1994 | q12      | fleet1     | 24 | DT   | h    | 16     |                                |              | •       |         | IND          |         |               |
| due to         | Statistical<br>Division | 1995~2023 | q3       | fleet2     | 21 | PT   | haul | -16    | Assignment                     |              |         | _       |              |         |               |
| visual         |                         | 2016~2023 | q3       | fleet3     | 21 | MEGL | day  | -21    | of CPUE                        |              |         | А       | ve           |         |               |
| inspection     | Port<br>sampling        | 2016~2023 | q4       | fleet4     | 8  | ОВТ  | day  | -23    |                                |              | _       |         | IND          |         |               |
| •              |                         |           |          |            |    |      |      |        | Kobe plot                      | ok           | ok      | ok      | ok           | ok      | ok            |
| (subjective)   |                         |           |          |            |    |      |      |        | CPUE                           | ok           | ok      | ok      | ok           | ok      | ok            |
|                |                         |           |          |            |    |      |      |        | Retrospective<br>analyses      | ok           | ok      | ok      | ok           | ok      | ok            |
| But it is OK.  |                         | ſ         | Diagnose | s & Result | s  |      |      |        | Convergence                    | ok           | ng      | ok      | ok           | ok      | ok            |
|                |                         |           | _        |            |    |      |      |        | retro&hind<br>(Table)          | ok           | ok      | ok      | ok           | ok      | ok            |
| Let see your   |                         |           |          |            |    |      |      |        |                                |              | ng      | ok      | ok           | ok      | ok            |

# Start 3:15 PM

## What is the important diagnostics

Numerical evaluation # of non convergence (B & F) (excluding average) Below 4 are not converged (0.6f)

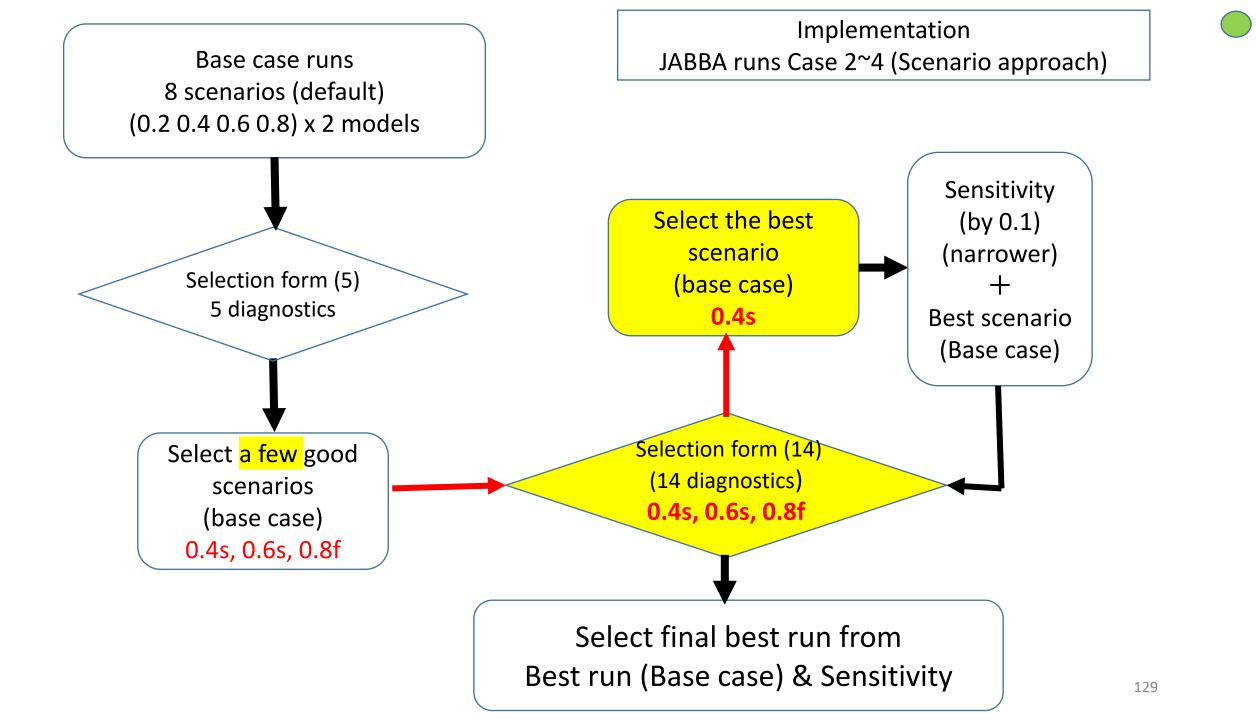
## **R**ETROSPECTIVE ANALYSES


(#42) (p.12) Retrospective analyses
 for 2 most important parameters (B & F)
 Mohan ρ (-0.15 < ρ < 0.2) → Converged</li>
 (value closer to 0.025 is better)
 Yellow marker (not converged)

| Mohan p | В     | F     |
|---------|-------|-------|
| 2023    | 0.06  | -0.05 |
| 2022    | -0.22 | 0.28  |
| 2021    | -0.14 | 0.16  |
| 2020    | -0.03 | 0.02  |
| 2019    | 0.26  | -0.20 |
| Average | -0.01 | 0.04  |

I checked for you

0.4s, 0.6s & 0.8f selected


|                         |           |           |           |    |      |           |        | Serial #                       | 11    | 12   | 13   | 14   | 15   | 16    |  |  |
|-------------------------|-----------|-----------|-----------|----|------|-----------|--------|--------------------------------|-------|------|------|------|------|-------|--|--|
|                         |           |           |           |    |      |           |        | Scenario #                     | 5     | 6    | 7    | 8    | 9    | 10    |  |  |
|                         |           |           |           |    |      | Kg        |        | depletion                      | 0.4   | 0.4  | 0.6  | 0.6  | 0.8  | 0.8   |  |  |
| Source                  | Perioc    | I         | fleet     | n= | Gear | Kg<br>per | r2 (%) | Model<br>s(Schaefer)<br>f(Fox) | s     | f    | s    | f    | S    | f     |  |  |
|                         |           |           |           |    |      |           |        |                                | SM-   | SM-  | SM-  | SM-  | SM-  | SM-   |  |  |
|                         |           |           |           |    |      |           |        | run ID                         | AV5-  | AV6- | AV7- | AV8- | AV9- | AV10  |  |  |
|                         |           |           |           |    |      |           |        |                                | 0.4s  | 0.4f | 0.6s | 0.6f | 0.8s | -0.6f |  |  |
|                         | 1971~1994 | q12       | fleet1    | 24 | РТ   | haul      | -16    |                                |       |      | A    | ve   |      |       |  |  |
| Statistical<br>Division | 1995~2023 | q3        | fleet2    | 21 |      |           |        | Assignment                     | t Ave |      |      |      |      |       |  |  |
|                         | 2016~2023 | q3        | fleet3    | 21 | MEGL | day       | -21    | of CPUE                        |       |      |      |      |      |       |  |  |
| Port<br>sampling        | 2016~2023 | q4        | fleet4    | 8  | ОВТ  | day       | -23    |                                |       |      | A    | ve   |      |       |  |  |
|                         |           |           |           |    |      |           |        | Kobe plot                      | ok    | ok   | ok   | ok   | ok   | ok    |  |  |
|                         |           |           |           |    |      |           |        | CPUE                           | ok    | ok   | ok   | ok   | ok   | ok    |  |  |
|                         |           |           |           |    |      |           |        | Retrospective<br>analyses      | ok    | ok   | ok   | ok   | ok   | ok    |  |  |
|                         |           | Diagnoses | & Results | 5  |      |           |        | Convergence                    | ok    | ng   | ok   | ok   | ok   | ok    |  |  |
|                         |           |           |           |    |      |           |        | retro&hind<br>(Table)          | ok    | ok   | ok   | ok   | ok   | ok    |  |  |
|                         |           |           |           |    |      |           |        | Results                        | ok    | ng   | ok   | ok   | ok   | ok    |  |  |
|                         |           |           |           |    |      |           |        | # of yellow<br>(retro)         | 2     | 4 (  | 2    | 4    | 4    | 2     |  |  |



We will use Selection form (14) to decide the best run (base case)

- We will work together
- Results (see next page)
- Use copies of page 4-5 (each report) (0.4s, 0.6s & 0,8f) to fill out the Selection form (14)

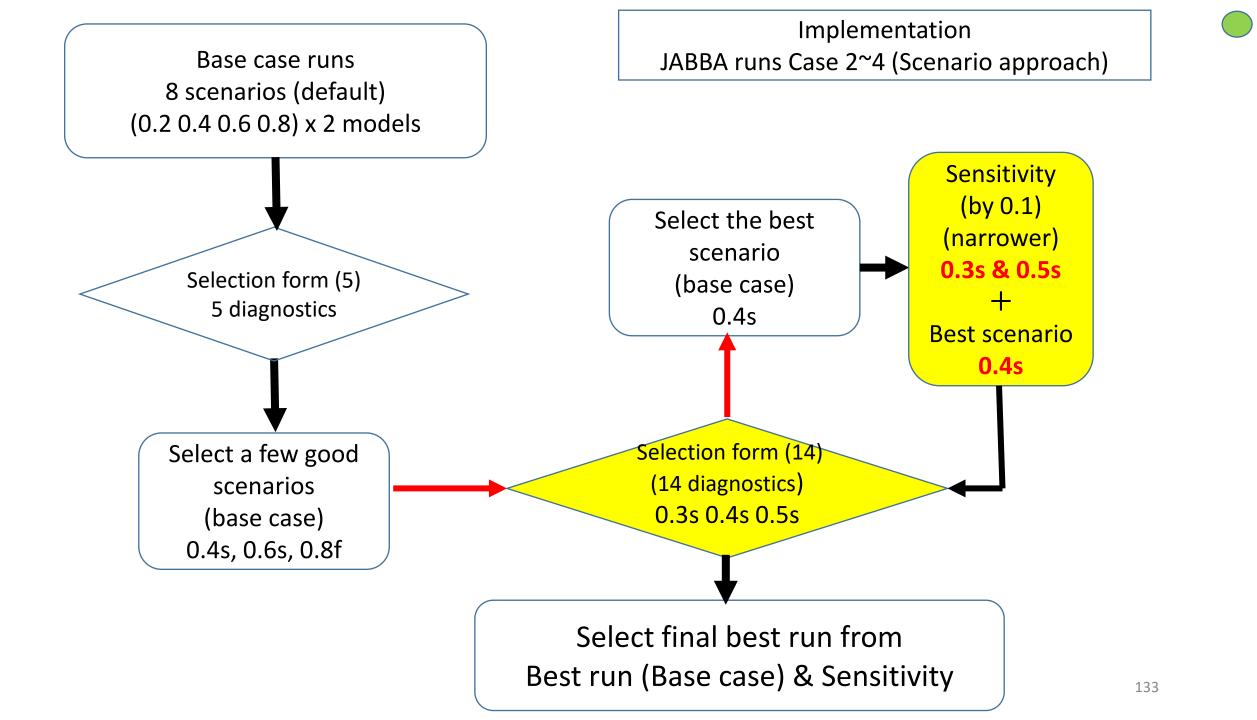
|                                          |                               | 1. Co                            | onverg                                                                                                     | ence (N                              | ICMC)     |                                                   |                                               | 2. Mo                      | del Fit                                                           |                                                                 | 2 Detro                                                |                                                 |                                                                                |                                         |                                             |
|------------------------------------------|-------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|---------------------------------------------------|-----------------------------------------------|----------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|
|                                          | Evaluation                    | Heidelberger and<br>Welch p test |                                                                                                            | 2.1 CPUE r                           | esiduals  | 2.2<br>RMSE                                       |                                               | ior Predictive<br>ck (PPC) | <ul> <li>3. Retrospective<br/>analyses</li> </ul>                 |                                                                 | 4. Hindcast analyses                                   |                                                 |                                                                                |                                         |                                             |
| Please see                               | Methods                       | Gewo<br>(largei<br>bet           | r value                                                                                                    | Heidel.p<br>(larger value<br>better) |           | 95% CI                                            | 95% CI band                                   |                            | Average p<br>values<br>(compute<br>yourself)                      | Visual inspection                                               | Mohan's ρ<br>(-0.15~2.0)                               | Visual<br>inspection                            | MASE (# of<br>yellow: non<br>significant=NG<br>predicted skill)<br>(for B & F) | MASE<br>(Average<br>value)              | Visual<br>inspection                        |
| Manual for<br>details on<br>diagnostics. | Criteria                      | К                                | r                                                                                                          | к                                    | r         | Red band<br>Auto-<br>correlation?<br>No is better | total # of<br>outliers<br>less # is<br>better | Less %<br>better fit       | Use the 5th<br>sheet to<br>compute.<br>Closer to 0.5 is<br>better | Ball shapes<br>located in center<br>are better (how<br>many #?) | # of yellow<br>markers<br>(B & F ratio)<br>less better | All trends<br>should be<br>similar<br>patterns. | Less # better                                                                  | should be<br>< 1 &<br>smaller<br>better | # OBS point<br>beyond<br>the 95% CI<br>band |
|                                          | Output #                      |                                  | #                                                                                                          | 20                                   |           | # 13 # 10                                         |                                               |                            | # 12                                                              |                                                                 | # 42 # 40                                              |                                                 | # 43                                                                           |                                         | # 41                                        |
|                                          | (page#)                       | (p.3)                            |                                                                                                            |                                      |           | (p.3                                              | (p.3) (p.3)                                   |                            | (p.4)                                                             |                                                                 | (p.3)                                                  | (p.3)                                           | (p.4                                                                           | )                                       | (p.4)                                       |
|                                          | diagnostics #                 | 1                                | 2                                                                                                          | 3                                    | 4         | 5                                                 | 6                                             | 7                          | 8                                                                 | 9                                                               | 10                                                     | 11                                              | 12                                                                             | 13                                      | 14                                          |
|                                          | Refer to sheet<br># how to do |                                  |                                                                                                            |                                      |           |                                                   |                                               |                            |                                                                   | (4)                                                             | (5)                                                    |                                                 |                                                                                | (6)                                     |                                             |
| Sensitivity                              | 0.4s                          | 0.78                             | 0.88                                                                                                       | 0.40                                 | 0.66      | 0                                                 | 0                                             | 24.2                       | 0.764                                                             | 20К                                                             | 2                                                      | ОК                                              | 1                                                                              | NA                                      | ОК                                          |
| Nest run<br>(base case)                  | 0.6s                          | 0.31                             | 0.71                                                                                                       | 0.19                                 | 0.43      | 0                                                 | 0                                             | 23.8                       | 0.782                                                             | 20К                                                             | 2                                                      | ОК                                              | 1                                                                              | NA                                      | ОК                                          |
| Sensitivity                              | 0.8f                          | 0.44                             | 0.37                                                                                                       | 0.24                                 | 0.40      | 0                                                 | 0                                             | 23.6                       | 0.768                                                             | 10К                                                             | 2                                                      | ОК                                              | 1                                                                              | NA                                      | ОК                                          |
|                                          | Best scenario?                | 0.4s                             | 0.4s                                                                                                       | 0.4s                                 | 0.4s      | same                                              | same                                          | 0.8f                       | 0.4s                                                              | 0.4s & 0.6s                                                     | same                                                   | same                                            | same                                                                           | same                                    | same                                        |
|                                          | (1)                           | # of th                          | e best                                                                                                     | diagno                               | sis for 0 | ).4s is 6, 0.6                                    | s is 1 and                                    | 0.8s is 2                  | •                                                                 |                                                                 |                                                        |                                                 | 1                                                                              |                                         |                                             |
| Comments                                 | (2)                           | Thus 0                           | ).4s is t                                                                                                  | he best                              | t and ma  | ain reason is                                     | s that Co                                     | nvergend                   | es are much                                                       | better than oth                                                 | ers.                                                   |                                                 |                                                                                |                                         |                                             |
| & decision                               | (3)                           |                                  | us 0.4s is the best and main reason is that Convergences are much better than others.<br>us we select 0.4s |                                      |           |                                                   |                                               |                            |                                                                   |                                                                 |                                                        |                                                 |                                                                                |                                         |                                             |

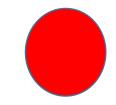




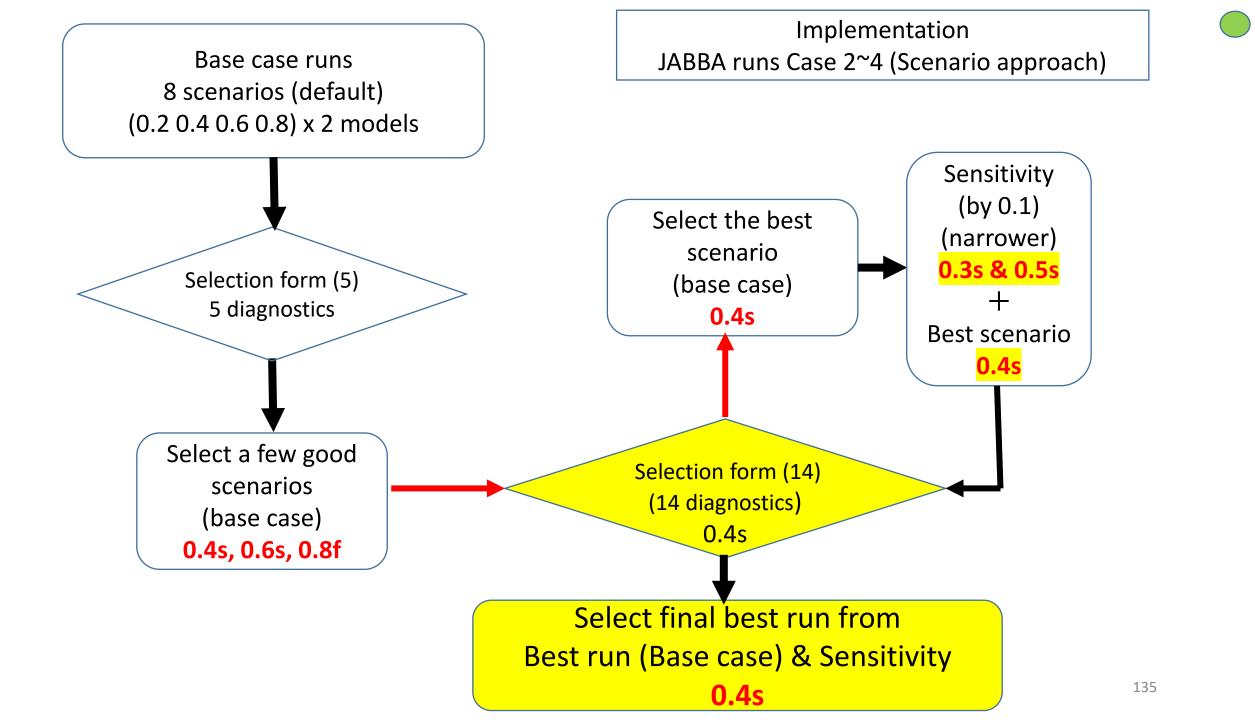
Sensitivity by 0.1 (before & after 0.4s) 0.3s & 0.5s

> New ID SM-final-0.3s SM-AV8-0.4s (original) SM-final-0.5s


0.3s, 0.4s, 0.5s will be compared Selection form (14)


# Now you can do it by yourself

## Selection form (14) (final) is available in Data Practice folder


| 🖵 > … Data Practice > JABBA 🔅  | > (2) Short mackerel (SM | 1) (Thailand) > Final |
|--------------------------------|--------------------------|-----------------------|
| □ ④ ⓒ □ ↓ 並べ替え                 | え 🎽 📃 表示 🎽 🚥             |                       |
| □ 名前                           | 更新日時                     | 種類 サ1                 |
| 0.4                            | 2025/05/17 13:24         | ファイル フォルダー            |
| (3) Selection form (14)(final) | 2025/05/17 11:10         | Microsoft Excel ワー    |

|                                          |                               | 1. Co | onverg                   | ence (N             | ICMC)                      |                                                   |                                               | 2. Mo                                        | del Fit                                                           |                                                                 | 2 Dotro                                                |                                                                                |                            |                                         |                                              |  |
|------------------------------------------|-------------------------------|-------|--------------------------|---------------------|----------------------------|---------------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|-----------------------------------------|----------------------------------------------|--|
|                                          | Evaluation                    | Н     |                          | erger a<br>h p test |                            | 2.1 CPUE r                                        | 2.1 CPUE residuals                            |                                              |                                                                   | rior Predictive<br>ck (PPC)                                     | <ul> <li>3. Retrospective<br/>analyses</li> </ul>      |                                                                                | 4. Hindcast analyses       |                                         |                                              |  |
| Please see                               | Methods                       |       | eke.p<br>r value<br>ter) | (large              | del.p<br>er value<br>tter) | 95% CI band RMSE                                  |                                               | Average p<br>values<br>(compute<br>yourself) | Visual inspection                                                 | Mohan's ρ<br>(-0.15~2.0)                                        | Visual<br>inspection                                   | MASE (# of<br>yellow: non<br>significant=NG<br>predicted skill)<br>(for B & F) | MASE<br>(Average<br>value) | Visual<br>inspection                    |                                              |  |
| Manual for<br>details on<br>diagnostics. | Criteria                      | К     | r                        | к                   | r                          | Red band<br>Auto-<br>correlation?<br>No is better | total # of<br>outliers<br>less # is<br>better | Less %<br>better fit                         | Use the 5th<br>sheet to<br>compute.<br>Closer to 0.5 is<br>better | Ball shapes<br>located in center<br>are better (how<br>many #?) | # of yellow<br>markers<br>(B & F ratio)<br>less better | All trends<br>should be<br>similar<br>patterns.                                | Less # better              | should be<br>< 1 &<br>smaller<br>better | # OBS points<br>beyond<br>the 95% CI<br>band |  |
|                                          | Output #                      |       | #                        | ŧ 20                |                            | # 1                                               | 3                                             | # 10                                         | ł                                                                 | # 12                                                            | # 42                                                   | # 40                                                                           | # 43                       | }                                       | # 41                                         |  |
|                                          | (page#)                       |       | (                        | p.3)                |                            | (p.3                                              | 3)                                            | (p.3)                                        |                                                                   | (p.4)                                                           | (p.3)                                                  | (p.3)                                                                          | (p.4)                      | )                                       | (p.4)                                        |  |
|                                          | diagnostics #                 | 1     | 2                        | 3                   | 4                          | 5                                                 | 6                                             | 7                                            | 8                                                                 | 9                                                               | 10                                                     | 11                                                                             | 12                         | 13                                      | 14                                           |  |
|                                          | Refer to sheet<br># how to do |       |                          |                     |                            |                                                   |                                               |                                              |                                                                   | (4)                                                             | (5)                                                    |                                                                                |                            | (6)                                     |                                              |  |
| Sensitivity                              | 0.3s                          |       |                          |                     |                            |                                                   |                                               |                                              |                                                                   |                                                                 |                                                        |                                                                                |                            |                                         | 4                                            |  |
| Nest run<br>(base case)                  | 0.4s                          |       |                          |                     |                            |                                                   |                                               |                                              |                                                                   |                                                                 |                                                        |                                                                                |                            |                                         |                                              |  |
| Sensitivity                              | 0.5s                          |       |                          |                     |                            |                                                   |                                               |                                              |                                                                   |                                                                 |                                                        |                                                                                |                            |                                         |                                              |  |
|                                          | Best scenario?                |       |                          |                     |                            |                                                   |                                               |                                              |                                                                   |                                                                 |                                                        |                                                                                |                            |                                         |                                              |  |
| •                                        | (1)                           |       | ·                        | ·                   | ·                          |                                                   | •                                             |                                              | <u> </u>                                                          |                                                                 |                                                        | ·                                                                              |                            |                                         |                                              |  |
| Comments<br>& decision                   | (2)                           |       |                          |                     |                            |                                                   |                                               |                                              |                                                                   |                                                                 |                                                        |                                                                                |                            |                                         |                                              |  |
| & decision                               | (3)                           |       |                          |                     |                            |                                                   |                                               |                                              |                                                                   |                                                                 |                                                        |                                                                                |                            |                                         |                                              |  |

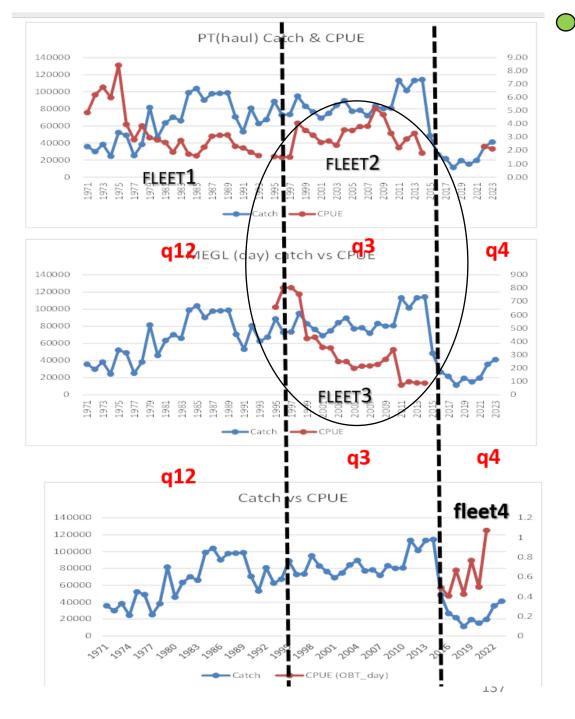




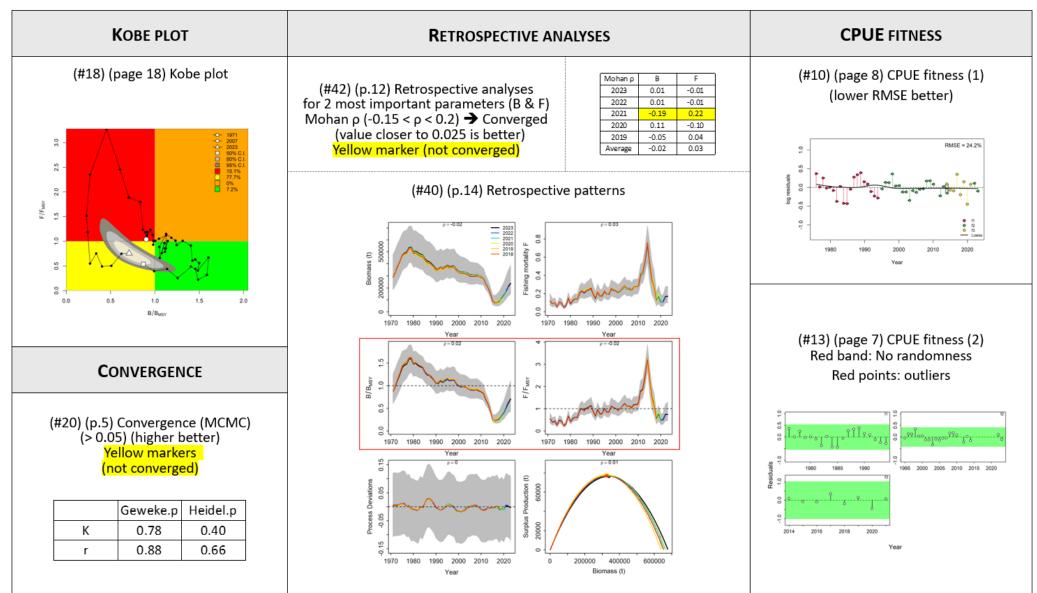
# What is your results?



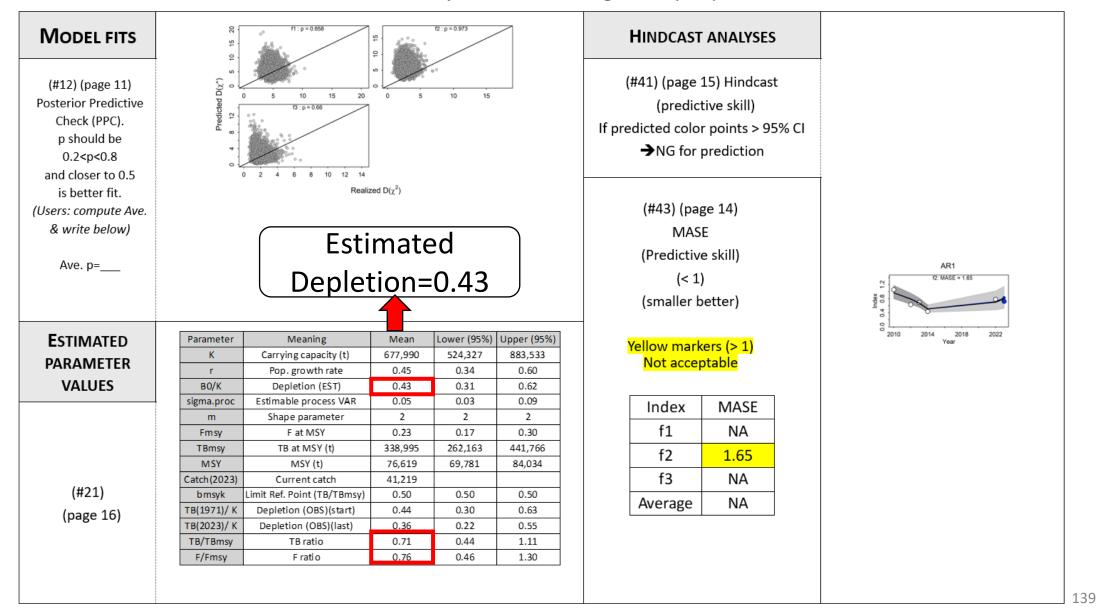
Explanation of final results (0.4s) 2<sup>nd</sup> Strategy (average)

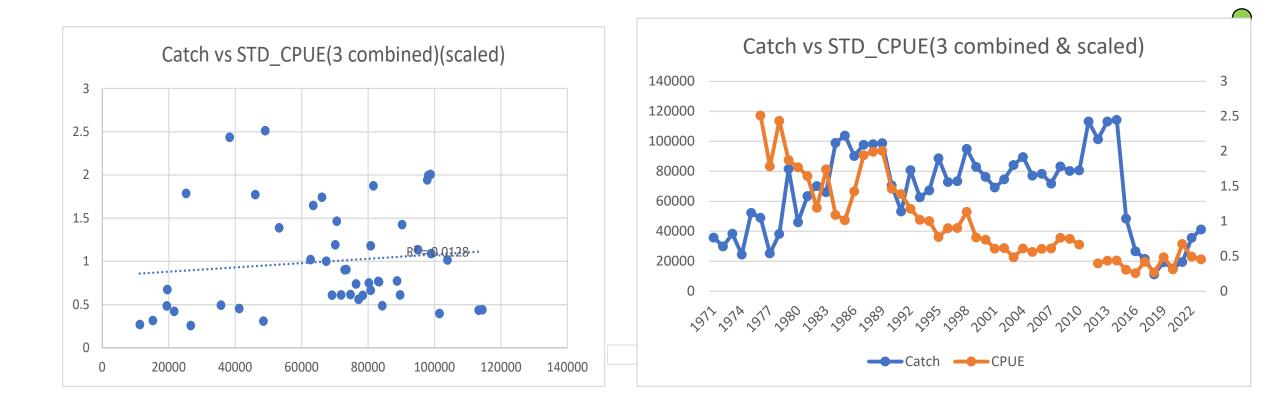

Before start, why average is Good?

Beginning of the 2<sup>nd</sup> strategy  $\rightarrow$  good results (very quick) As averages are **BETTER** indicator. Speed up JABBA with good Results We could start from 2<sup>nd</sup> Strategy But normally start with 1<sup>st</sup> Strategy


(individual)

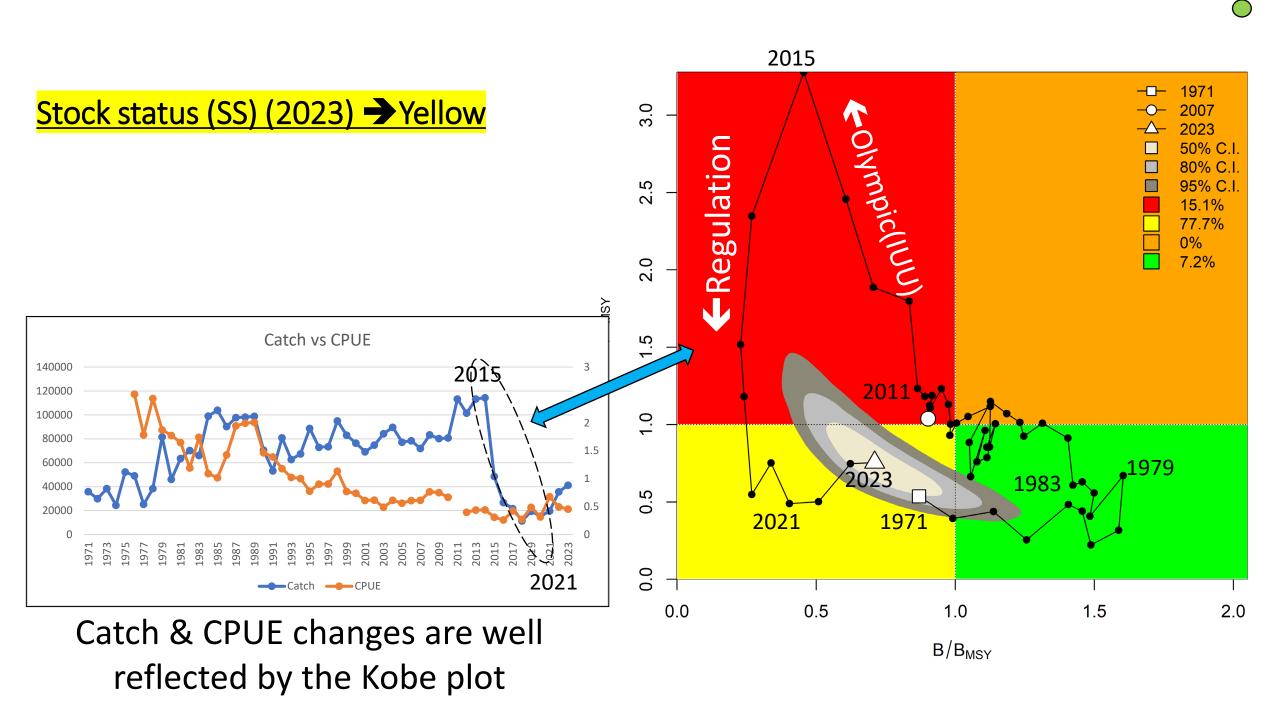
Good progress in the 2<sup>nd</sup>


strategy (average CPUE)

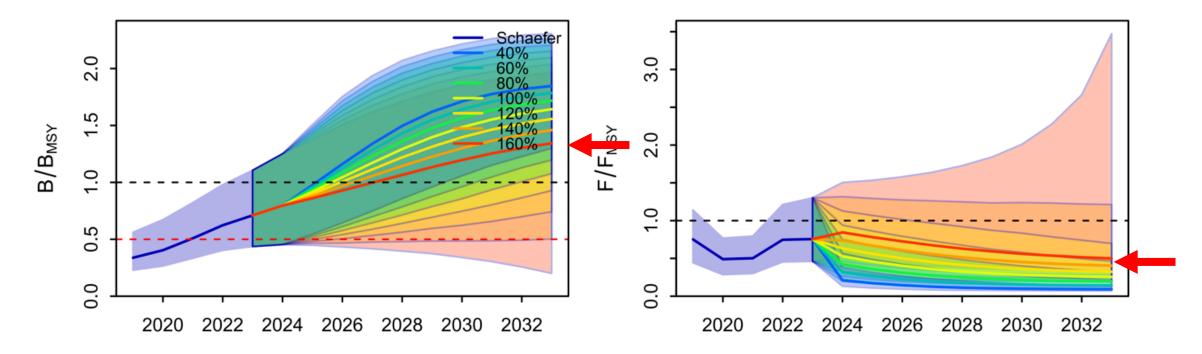



#### Summary of results & diagnoses (1/2) (Key diagnoses)




Summary of results & diagnoses (2/2)






3 selected individual CPUE had high –r2, but the combined one r2=1.2% (almost flat). This is due to combined effect. It does now show a good correlation. But it is no problem as the individual CPUE had high –r2.

The global situation shows very good relation between catch and STD\_CPUE.



- Low catch level (2023) (41K) → Biomass recover MSY level (77K) in 2025 (2 years).
- F is very low (2023), even if 60% catch increased → F (2032) (far below Fmsy).
- Considering the above, TAC can be increased to at least 60% (67K) (MSY=77K).



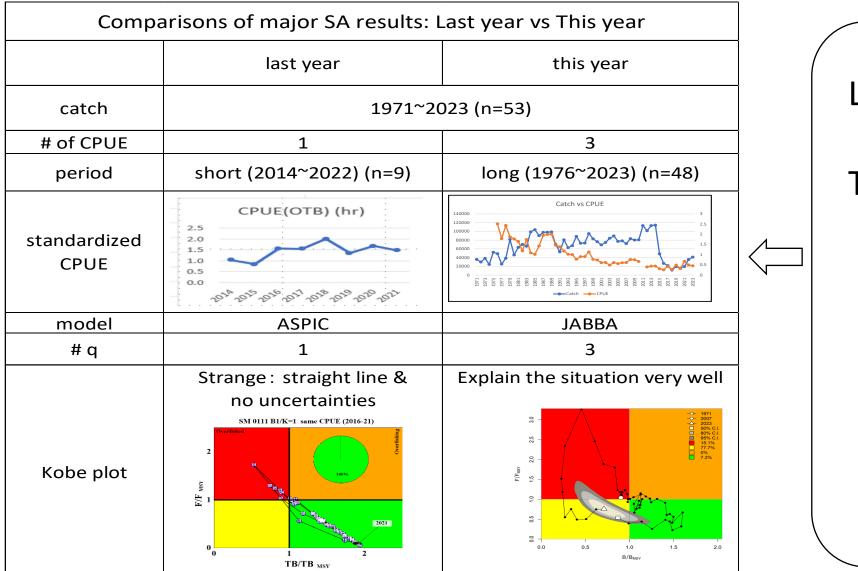
| (#43) (pa                             | ge 14)                                 |  |  |  |  |  |  |  |  |  |
|---------------------------------------|----------------------------------------|--|--|--|--|--|--|--|--|--|
| MAS                                   | MASE                                   |  |  |  |  |  |  |  |  |  |
| (Predictiv                            | (Predictive skill)                     |  |  |  |  |  |  |  |  |  |
| (< 1                                  | ):<br>:                                |  |  |  |  |  |  |  |  |  |
| (smaller better)                      |                                        |  |  |  |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |  |  |  |  |  |  |  |  |  |
|                                       | Yellow markers (> 1)<br>Not acceptable |  |  |  |  |  |  |  |  |  |
|                                       |                                        |  |  |  |  |  |  |  |  |  |
| Index                                 | MASE                                   |  |  |  |  |  |  |  |  |  |
| f1                                    | NA                                     |  |  |  |  |  |  |  |  |  |
| f2                                    | <b>1.65</b>                            |  |  |  |  |  |  |  |  |  |
| f3                                    | NA                                     |  |  |  |  |  |  |  |  |  |
| Average                               | NA                                     |  |  |  |  |  |  |  |  |  |
|                                       |                                        |  |  |  |  |  |  |  |  |  |

Prediction power (no so good)

- →TAC (just reference)
- $\rightarrow$  need precautionary approach.
- → Manger will decide (multi species gear)

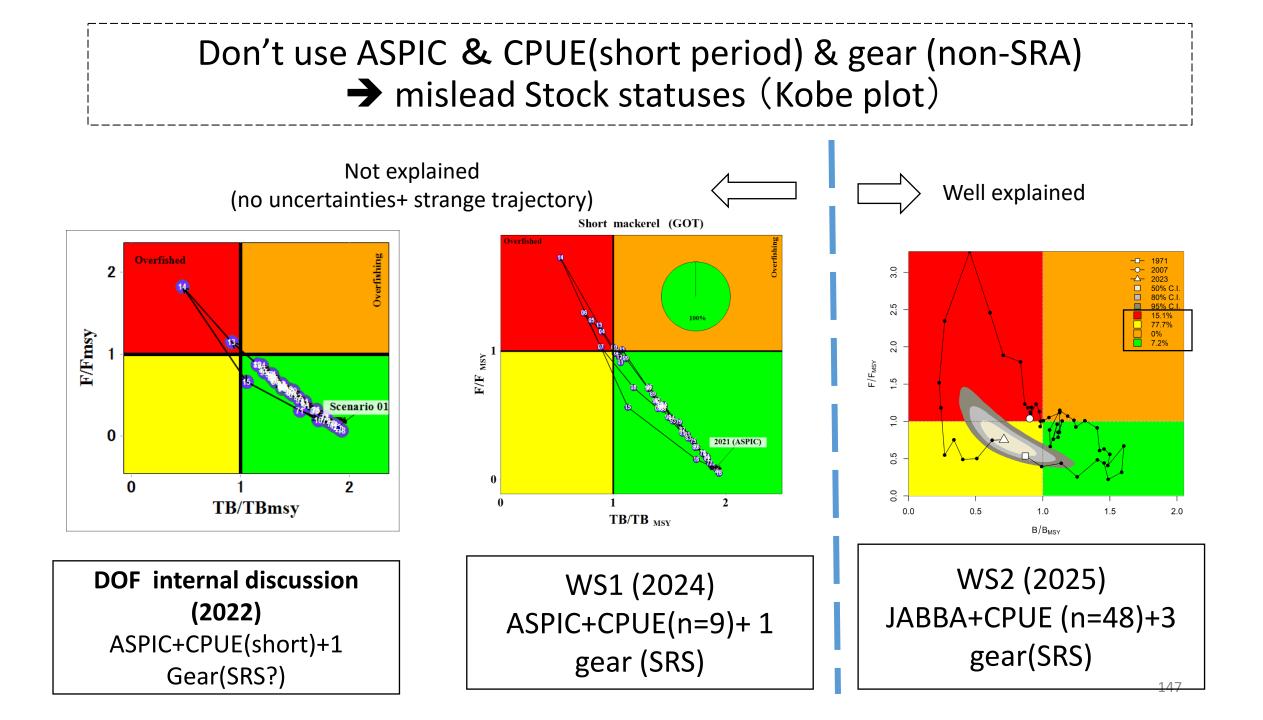
f1 & f3 NA (no recent CPUE for prediction). f2 is not significant (not reliable).

→ Results with caution




# 5.3 Let's compare with TB & other models

Nipa san




# Comparison with other SA models



Last year (ASPIC) vs. This year(JABBA) Longer CPUE 1971~2023 3 good CPUE

Good Improvement



#### Long period of CPUE 1971~2023 Gear (SRS: simple random sampling )

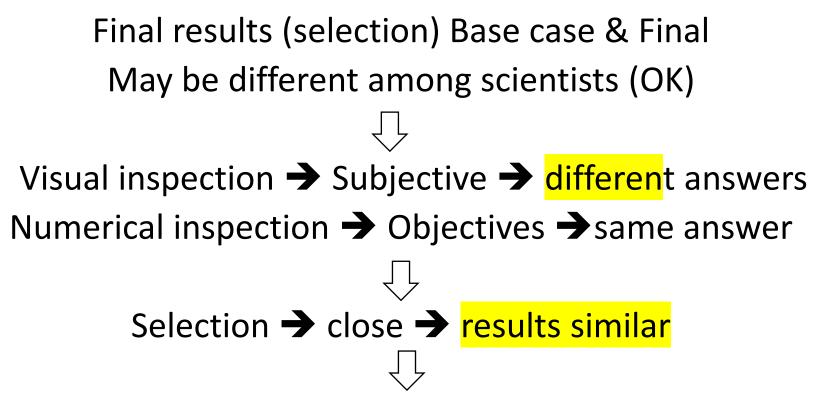
PT (haul), MEGL(day) & OBT (day) recommended other gears will provide biased abundance index

> LONG term CPUE available We did not notice until now (big treasure)

1971~1994 Year area → CPUE standardization OK without MO 1995~2023 Year, MO & area → CPUE standardization better

### JABBA Comparisons with ASPIC

JABBA Far better Technical & practical aspect (ASPIC very outdated) JABBA Estimation (robust) Space-State No local minimum problem (ASPIC) because of the Bayesian approach


> Multi CPUE (flexible) Many useful outputs

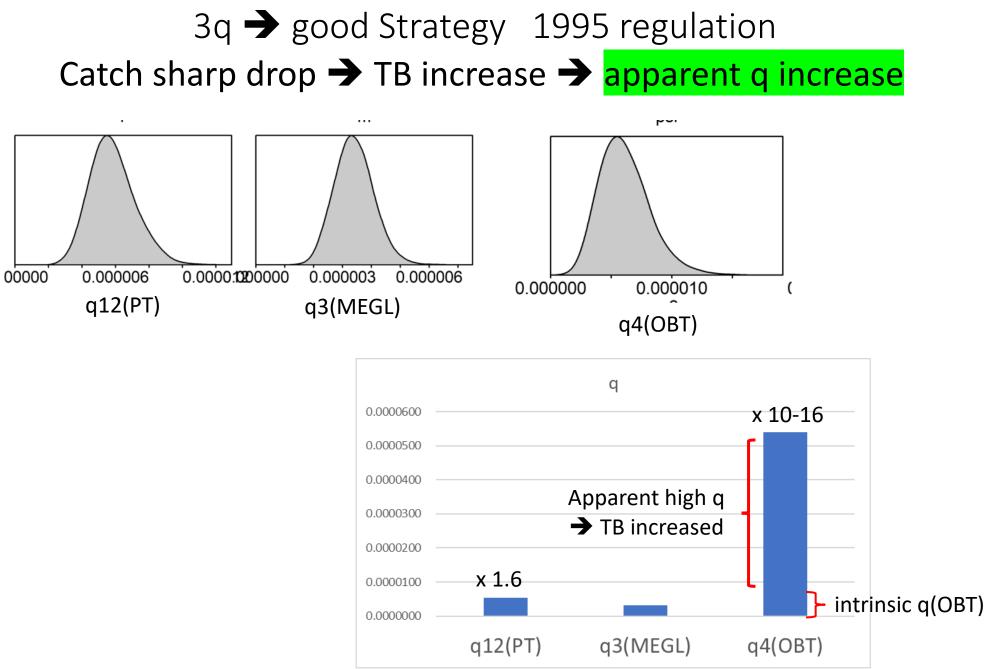
#### Comparison between ASPIC and JABBA

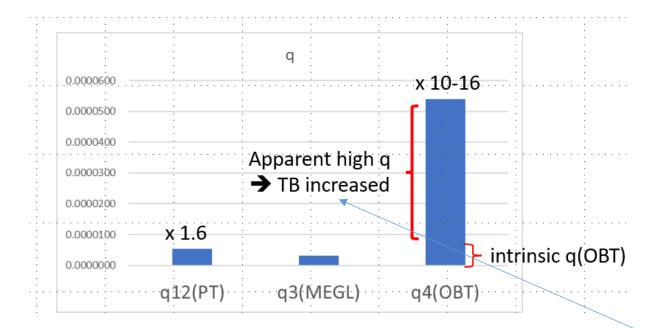
Based on the description on JABBA outlines & features, a summary is made on reasons why JABBA is superior to ASPIC. This is because we have been using ASPIC for many years, thus, we need a comparison for users to understand.

|            | JABBA                                                                                                      | ASPIC                                                             |  |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| (1)        | Estimation method (Bayesian approach based on likelihood) used by JABBA is theoretically much better, more |                                                                   |  |  |  |  |  |  |  |  |
| Estimation | flexible and superior than the least squares (tractional) method used by ASPIC.                            |                                                                   |  |  |  |  |  |  |  |  |
| methods    |                                                                                                            |                                                                   |  |  |  |  |  |  |  |  |
| (2)        | JABBA can estimate parameters much easily &                                                                | ASPIC needs a tedious grid (pin point) search (Batch job), which  |  |  |  |  |  |  |  |  |
| Parameter  | effectively in a short time by the Bayesian                                                                | sometimes produces incorrect parameters due to local (false)      |  |  |  |  |  |  |  |  |
| estimation | approach with MCMC.                                                                                        | minima.                                                           |  |  |  |  |  |  |  |  |
| (3)        | JABBA can accept any CPUE series. After the                                                                | ASPIC needs to check CPUE series if it is plausible in advance by |  |  |  |  |  |  |  |  |
| CPUE       | run, implausible CPUE will be detected.                                                                    | the data QC. Otherwise, it is difficult to get convergence.       |  |  |  |  |  |  |  |  |
| (4)        | Outliers can be found easily after runs by                                                                 | Need to check outliers before runs. It may be difficult to detect |  |  |  |  |  |  |  |  |
| Outliers   | inspecting the residual plots.                                                                             | outliers after run as no effective graphs as in JABBA.            |  |  |  |  |  |  |  |  |
| (5)        | JABBA theory is difficult & complicated. But it is                                                         | Theory is not difficult as for JABBA. But implementation by the   |  |  |  |  |  |  |  |  |
| Theory     | easy to implement if the menu-driven software                                                              | menu-driven software is not as easy nor effective as for JABBA.   |  |  |  |  |  |  |  |  |
|            | is used.                                                                                                   |                                                                   |  |  |  |  |  |  |  |  |

## Important: Evaluation of JABBA runs




BUT Better discuss among a few scientists for the final decision

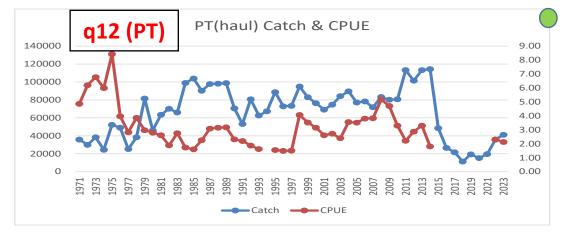

➔ Affect management decision

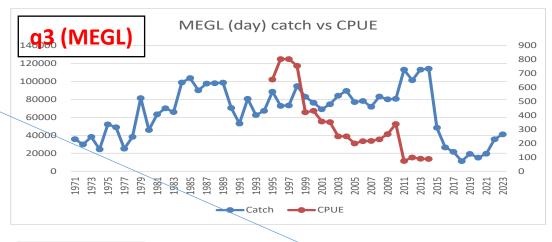


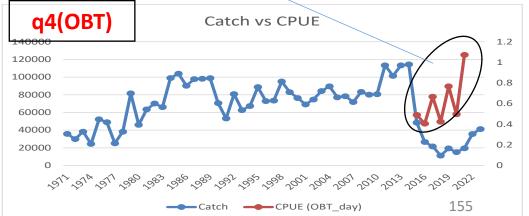
We will discuss Day 5 (very important issue)

# q catchability







#### SM


q12(PT) & q2(MEGL) Low q4 (OBT) high

Clear different q effect









# About q

- As explained by Weerapol san, Situation Fisheries are changed by 3 times since 1960.
- However, actual q (catchability) among gears are likely similar as q values are almost constant (1971~2015).
- The big increased of q is after 2016.

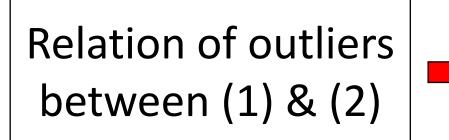
# About q

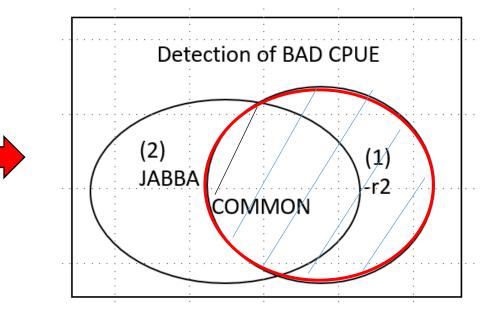
- This is due to sudden technical evolution ?
- Probably no, but there may be small contribution.
- Real cause → TB increase after sudden drop of catch in 1996
   Introduction of new regulation
- Thus, it was good to estimate 3 q and incorporate to JABBA

# JABBA

### JABBA

- Good CPUE → good results in short runs (time).
- JABBA will detect bad data (outliers).
- Remove in advance by −r2 → smooth run (a short run).
- BAD CPUE → many runs & hours → end up NO results
- NO result 
   One of good solution
- Scenario approach:


Quick diagnostics (base case) → Selection form (5) Full diagnosis (final) → Selection form (14)


### JABBA Good CPUE

High -r2 (Scatterplot) Exclude <u>large</u> outliers

JABBA → detect model-based outliers (some are same as -r2 based outliers) Thus if –r2 based large outliers are excluded (in advance)

Less work & less time to find good results





BIG outliers <u>excluded</u> before JABBA (1) −r2,
 JABBA will produce less outliers (red points)
 & Produce more Green
 <u>Provide good results in a short time</u>.
 Otherwise, takes a long time

### JABBA good CPUE

Standardized CPUE(minor gear) → Good for some cases

Need to check all available nominal CPUE In the same gear, effort unit also need to check some good CPUE

For example(same gear different r2), OBT (kg/day) r2=-34% OBT(kg/hr) r2=+2%

### JABBA GOOD CPUE

#### We found 3 gears -> GOOD CPUE (1 major & 2 minor gears)

STAT : PS(kg/day) & PT (kg/hr)

Port sampling : OBT (kg/day)



we can use same 3 gears (with updated data) as it takes time

Unless some big change in fisheries

After 3-4 years, we need to check ALL again

### JABBA scenario approaches

Robust & effective Direct approach unstable (depletion rate)

Recommended Butterworth, Wang and other (papers) Special treatment if data not for a long period estimation unstable

# Future

### Future Publication

We will publish Fish for the People (SEAFDEC) as it directly relates to SEAFDEC (good contribution)

Nipa + Puy + Nishida

### DOF stock assessment

### If DOF is OK,

# we can do JABBA assessment routinely for important species as reference as JABBA quite reliable & effective

Can be considered

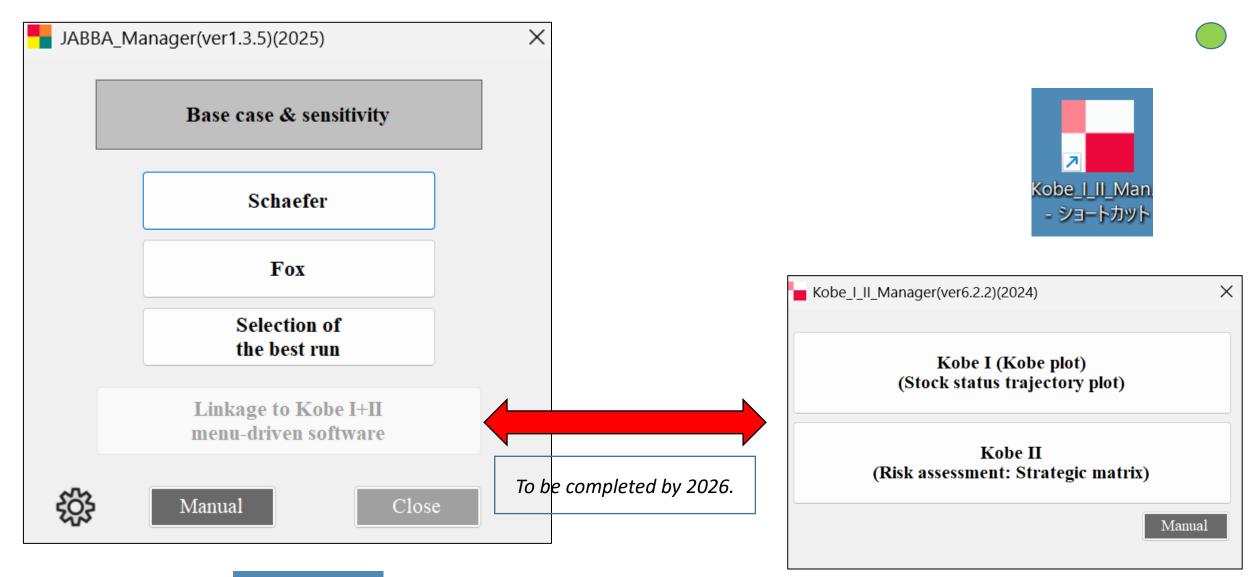
### software

## JABBA menu driven software

• If you know R, you can use JABBA.

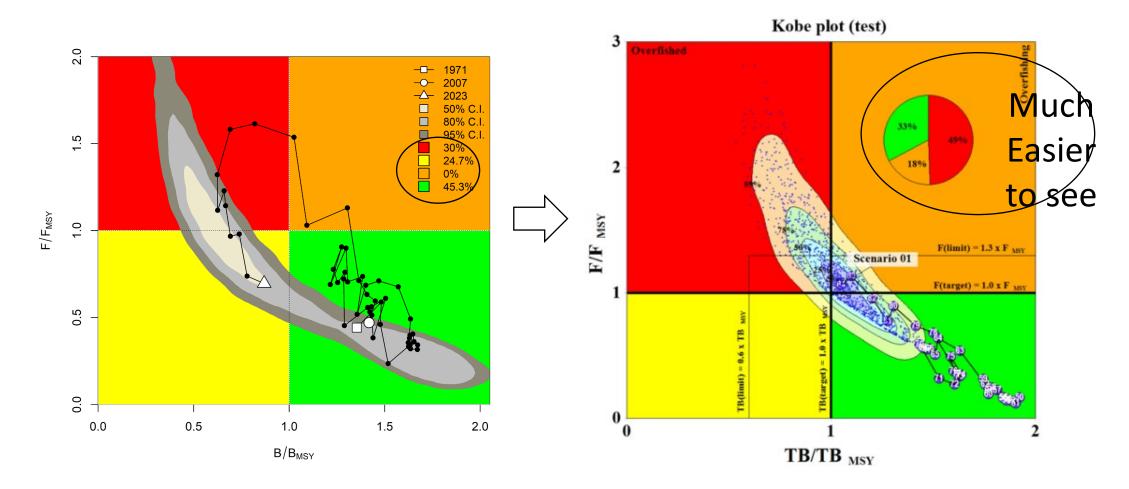
• But JABBA have many options, so that you need to know details on JABBA (highly technical) and manipulate by R.

• You need to change r codes. It will be tough.


JABBA menu driven software

• Default is standard and good enough to get useful results. Software is very easy & simple to use.

• Then you can run freely without worrying about details of JABBA.


• However, scenario manipulation is a bit tedious.

• But after practice, you can easily handle the software.





#### Better Kobe plot → Pie Chart + Target/Limit Reference Point Thai use Reference points (0.9\*TB and 1.1\*F as RP)



#### Kobe II Risk assessment $\rightarrow$ Good for Management (TAC)

|                                             | Color legend            |          |                     |      |                                |      |                                 |      |                        |      | ]    |      |
|---------------------------------------------|-------------------------|----------|---------------------|------|--------------------------------|------|---------------------------------|------|------------------------|------|------|------|
|                                             | Risk levels<br>Probably |          | Low risk<br>0 - 25% |      | Medium<br>Iow risk<br>25 - 50% |      | Medium<br>high risk<br>50 - 75% |      | High risk<br>75 - 100% |      |      |      |
|                                             |                         |          |                     |      |                                |      |                                 |      |                        |      |      |      |
|                                             | %                       | Catch    | 1985                | 1986 | 1987                           | 1988 | 1989                            | 1990 | 1991                   | 1992 | 1993 | 1994 |
|                                             |                         | (tons)   | 1000                | 1500 | 1507                           | 1000 | 1505                            | 1000 | 1001                   | 1992 | 1000 | 1001 |
|                                             | 200%                    | 40,533   | 42%                 | 99%  | 100%                           | 100% | 100%                            | 100% | 100%                   | 100% | 100% | 100% |
|                                             | 150%                    | 33,778   | 42%                 | 96%  | 99%                            | 100% | 100%                            | 100% | 100%                   | 100% | 100% | 100% |
| [                                           | 100%                    | 27,022   | 42%                 | 89%  | 96%                            | 99%  | 100%                            | 100% | 100%                   | 100% | 100% | 100% |
| % Increased from the                        | 80%                     | 24,320   | 42%                 | 85%  | 93%                            | 97%  | 99%                             | 100% | 100%                   | 100% | 100% | 100% |
| current catch level                         | 60%                     | 21,618   | 42%                 | 79%  | 88%                            | 93%  | 96%                             | 98%  | 99%                    | 100% | 100% | 100% |
|                                             | 40%                     | 18,915   | 42%                 | 71%  | 80%                            | 87%  | 91%                             | 94%  | 96%                    | 97%  | 98%  | 99%  |
|                                             | 30%                     | 17,564   | 42%                 | 65%  | 75%                            | 82%  | 87%                             | 91%  | 93%                    | 95%  |      | 97%  |
|                                             | 20%                     | 16,213   | 42%                 | 60%  | 69%                            | 76%  | 81%                             | 86%  | 89%                    | 91%  | 92%  | 93%  |
|                                             | 10%                     | 14,862   | 42%                 | 54%  | 60%                            | 68%  | 73%                             | 77%  | 81%                    | 84%  | 86%  | 88%  |
| * Current catch                             | 0%                      | 13,511   | 42%                 | 48%  | 51%                            | 56%  | 61%                             | 64%  | 68%                    | 72%  | 75%  | 77%  |
| % decreased from the<br>current catch level | -5.6%                   | **12,760 | 42%                 | 42%  | 45%                            | 48%  | 51%                             | 54%  | 57%                    | 60%  | 62%  | 64%  |
|                                             | -10%                    | 12,160   | 42%                 | 39%  | 41%                            | 43%  | 45%                             | 48%  | 50%                    | 52%  | 54%  | 55%  |
|                                             | -20%                    | 10,809   | 42%                 | 30%  | 28%                            | 28%  | 27%                             | 26%  | 27%                    | 27%  | 27%  | 27%  |
|                                             | -30%                    | 9,458    | 42%                 | 21%  | 15%                            | 11%  | 9%                              | 8%   | 8%                     | 8%   | 8%   | 9%   |
|                                             | -40%                    | 8,107    | 42%                 | 10%  | 4%                             | 2%   | 1%                              | 1%   | 1%                     | 1%   | 1%   | 1%   |
|                                             | -60%                    | 5,404    | 42%                 | 1%   | 0%                             | 0%   | 0%                              | 0%   | 0%                     | 0%   | 0%   | 0%   |
|                                             | -80%                    | 2,702    | 42%                 | 0%   | 0%                             | 0%   | 0%                              | 0%   | 0%                     | 0%   | 0%   | 0%   |

(Note) \* Average catch for 3 last assessments years \*\* MSY level

### Summary

- JABBA effective & useful → DOF can use
- Good CPUE (SRS) → ALL available nominal CPUE → QC(-r2)
- JABBA Good standardized CPUE  $\rightarrow$  key for successful JABBA
- Good assessment results by JABBA (SM) → publication (SEAFDEC)
- q by period important (different by evolution, regulation etc)
  - need incorporate in stock assessment (standardized q)
- JABBA scenario & strategy approach

➔ robust & reliable estimation

• New CPUE standardization with 7 Covariates → useful ENV, category

(1) Practice case [1] Swordfish (1950~2023)(2) Home work

→ much less than the initial idea as only 2 PC can be used.